Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kim Thành
Xem chi tiết
Nguyễn Xuân Bách
Xem chi tiết
Trần Hoàng Hải
Xem chi tiết
Nguyễn Thanh bình
Xem chi tiết
Nguyễn Văn A
3 tháng 4 2015 lúc 20:34

mik nhớ kq là ..........50 thì phải

Trần Nguyễn Vân Ngọc
Xem chi tiết
Yen Nhi
26 tháng 12 2021 lúc 11:13

Answer:

Mình làm thành tính tỉ số luôn nhé!

\(A=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}}\)

Ta xét \(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{2-1}{1.2}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{100}-1-\frac{1}{2}-...-\frac{1}{50}\)

\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+...+\left(\frac{1}{50}-\frac{1}{50}\right)+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}\)

\(\Rightarrow\frac{A}{B}=1\)

Khách vãng lai đã xóa
Nguyễn Tiến Đạt
14 tháng 6 2023 lúc 16:47

2.2=4. đúng nên tick nha!

 

Trần Nguyễn Vân Ngọc
Xem chi tiết
Trần Nguyễn Vân Ngọc
19 tháng 1 2016 lúc 16:04

Xét mẫu số:   1/(2x3) + 1/(3x4) + …… + 1/(99x100)

       = 1/1 – 1/2 + 1/3 – 1/4 + ......... + 1/99 – 1/100

       = (1 + 1/3 + ............ + 1/99) – (1/2 + 1/4 + .......... + 1/100)

       = (1 + 1/3 + ............ + 1/99)+(1/2+1/4+1/6+….+1/100) – (1/2+1/4+1/6+ .......... + 1/100)x2

       = (1 + 1/2 + 1/3 + 1/4 + ..... + 1/99 + 1/100) – (1 + 1/2  + 1/3 + ....... +1/50 )

       = 1/51 + 1/52 + 1/53 + ............. + 1/100            (Đơn giản số trừ)

Vậy:  (1/51 + 1/52 + 1/53 + ............. + 1/100) / (1/1x2 + 1/3x4 + .......... + 1/99x100)     =

          (1/51 + 1/52 + 1/53 + ............. + 1/100) / (1/51 + 1/52 + 1/53 + ............. + 1/100) = 1

tran manh hung
4 tháng 4 2019 lúc 19:08

Mày ko duyệt thì CKET

Đặng Công An
4 tháng 5 2019 lúc 23:09

thế mày biết làm thì làm hộ tao cái, đéo cóp bài đứa trên

Nguyễn Hữu Quyền
Xem chi tiết
Yun Kery
Xem chi tiết
Nguyễn Tất  Hùng
Xem chi tiết
Nguyễn Phương Uyên
13 tháng 10 2018 lúc 19:57

\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\left(đpcm\right)\)

Nguyễn Phạm Hồng Anh
13 tháng 10 2018 lúc 20:04

Ta có : \(VT=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\)

               \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)

                \(=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{100}\right)\)

                \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+...+\frac{1}{100}\right)\) 

                 \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)\)

                   \(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)     

\(\Rightarrow\) \(ĐPCM\)