Cho tam giác nhọn MNP. hai đường cao MH,NI cắt nhau tại K.
a, C/m PK vuông góc với MN
b,Khi góc MPN=50 độ, hãy tính góc NKH
Nhanh lên nha! Mik cần gấp nhé! Thanks
Cho hai đường thẳng a và b cùng vuông góc với đường thẳng d cắt a tại M và cắt b tại N
a, Góc aMN =142 độ , Tính MNb
b, Hai đường phân giác của Góc NMa, MNb cắt nhau tại P sao cho P thuộc C .Tính MPN
Cho hai đường thẳng a và b cùng vuông góc với đường thẳng d cắt a tại M và cắt b tại N
a, Góc aMN =142 độ , Tính MNb
b, Hai đường phân giác của Góc NMa, MNb cắt nhau tại P sao cho P thuộc C .Tính MPN
Cho tam giác MNP vuông tại M. Lấy I là trung điểm MP.Chứng minh rằng:
a)MN<NI<NP
b)Trên tia đối của tia IN lấy K sao cho IK=IN.Chứng minh tam giác IPK= tam giác IMN
c)PK=MN và góc MNI= góc IKP
d)Tính góc MPN, khi góc MNP=35 độCho tam giác MNP vuông tại M. Lấy I là trung điểm MP.Chứng minh rằng:
a)MN<NI<NP
b)Trên tia đối của tia IN lấy K sao cho IK=IN.Chứng minh tam giác IPK= tam giác IMN
c)PK=MN và góc MNI= góc IKP
d)Tính góc MPN, khi góc MNP=35 độ
a: ΔMNI vuông tại M
=>MN<NI và góc MIN<90 độ
=>góc NIP>90 độ
=>NI<NP
=>MN<NI<NP
b: Xét ΔIPK và ΔIMN có
IP=IM
góc PIK=góc MIN
IK=IN
=>ΔIPK=ΔIMN
c: ΔIPK=ΔIMN
=>PK=MN và goc MNI=góc PKI
d: góc MPN=90-35=55 độ
cho tam giác mnp có 3 góc nhọn , 2 đường cao ni và pk cắt nhau tại h
Cho tam giác MNP, trên nửa mặt phẳng bờ MP không chứa N, vẽ tia Mx sao cho góc xMP= góc MPN
a/ CMR: Mx//Np
b/qua M vẽ MH vuông góc với NP tại H (H thuộc BC), qua P vẽ PK vuông góc với Mx tại K (K thuộc Mx). CMR: MH//PK
c/ Vẽ tia Ny//MP, tia Ny cắt tia đối của tia MX tại E. Tính tổng các góc của tam giác MNE ?
Cho tam giác MNI.vẽ đường tròn đường kính NI cắt MN và MI lần lượt tại D,E.
a. Chứng minh NE vuông góc với MI , ID vuông góc với MN
b. Gọi H là giao điểm của NE và ID.Chứng minh MH vuông góc với NI
Cho tam giác ABC nối tiếp (O;R).Tính độ dài các cạnh AB,AC,biết R = 3cm và khoảng cách từ O đến AB,AC lần lượt là 2\(\sqrt{2}\) và \(\dfrac{\sqrt{11}}{2}\)cm
Câu 1:
a: Xét (\(\dfrac{NI}{2}\)) có
ΔNEI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNEI vuông tại E
Xét \(\left(\dfrac{NI}{2}\right)\) có
ΔNDI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNDI vuông tại D
b: Xét ΔMNI có
NE là đường cao ứng với cạnh MI
ID là đường cao ứng với cạnh MN
NE cắt ID tại H
Do đó: MH\(\perp\)NI
Cho tam giác MNP vuông tại M có đường cao MH . Từ H kẻ HD vuông góc MP tại D
a, CM : tam giác MHP đồng dạng với tam giác NMP
b, CM:MN. MP = NP . MH
c, CM:HD ²=MD.PD
d,CM:MP ²=PH . PN
giúp mik với , mik dg cần gấp :)))
Cho tam giác MNP cân tại M ( góc M <90 độ). Kẻ NH vuông góc với MP ( H thuộc MP), PK vuông góc với MN ( K thuộc MN). NH và PK cắt nhau tại E.
a) chứng minh tam giác NHP= tam giác PKN.
b) chứng minh tam giác ENP cân.
c) Chứng minh ME là đường phân giác của góc NMP.
Cho tam giác MNP cân tại M ( góc M <90 độ). Kẻ NH vuông góc với MP ( H thuộc MP), PK vuông góc với MN ( K thuộc MN). NH và PK cắt nhau tại E.
a) chứng minh tam giác NHP= tam giác PKN.
b) chứng minh tam giác ENP cân.
c) Chứng minh ME là đường phân giác của góc NMP.
a: Xét ΔKNP vuông tại K và ΔHPN vuong tại H có
PN chung
góc KNP=góc HPN
=>ΔKNP=ΔHPN
b: Xét ΔENP có góc ENP=góc EPN
nên ΔENP cân tại E
c: Xét ΔMNE và ΔMPE có
MN=MP
NE=PE
ME chung
=>ΔMNE=ΔMPE
=>góc NME=góc PME
=>ME là phân giác của góc NMP