tìm số nguyên x,y biet:x^2+x.y+y^2=x^2.y^2
tìm các số nguyên x,y sau
a)x.y=-2
b)x.y=-3 và x<y
c)(x+1)(y-3)=-5
d)x.y=-11
e)x.y=-3 và x<y
f)(x-2)(y+5)=-3
a: \(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-1;2\right);\left(-2;1\right);\left(2;-1\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(-3;1\right);\left(-1;3\right)\right\}\)
d: \(\left(x,y\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
Tìm nghiệm nguyên của phương trình :
1, x^2 - x.y + y^2=2.x - 3.y - 2
2, 2.x.y +2.x +y +1 >= ( lớn hơn hoặc bằng ) 4.x^2 + y^2
3. 2.x^2 + y^2 -2.x.y +y=0
4. x^2 + y^2 + x.y - 2.x - y =0
tìm các số nguyên x,y sao cho
a)(x+1)(y-2)=-5
b)x.y=-3
c)x.y=-3 và x<y
d)(x-1)(y+1)=-3
b) Ta có: xy=-3
nên x,y là các ước của -3
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(1;-3\right);\left(-1;3\right);\left(-3;1\right);\left(3;-1\right)\right\}\)
Câu 1: Tìm các số nguyên x,y sao cho :
a/ x.y = -5
b/ x.y= -5 và x > y
c/ (x+1)(y-2)= -5
Câu 2: Tìm các số nguyên x,y sao cho :
a/ x.y = -3
b/ x.y= -3 và x < y
c/ (x-1)(y+1)= -3
Câu 3: Tìm các số nguyên x,y sao cho :
a/ x.y= -7
b/x.y=-7 và x<y
c/ (x-5).(y+4) = -7
Mình cần gấp!!!
Ai giải sớm mk tick cho ạh :333
Cảm ơn...
câu 1 a) xy=-5 => (x,y)=(1,-5),(-1,5)
b) xy=-5 với x>y=>x=1,y=-5
c)(x+1)(y-2)=-5 => * x+1=1 và y-2=-5 => x=-1, y=-3
* x+1=-5 và y-2=1=> x=-6 , y=3
câu 2 , câu 3 tương tự
tìm các cặp số nguyên x;y
a. x.y-3.x+y-3=5
b. x.y-y+x=4
c. x2-x.y-y=7
a)x.y-3x+y-3=5
x.(y-3)+(y-3)=5
(y-3)(x+1)=5
suy ra (y-3)(x+1) thuộc Ư(5)={-1;1;5;-5}.Ta có bảng sau
y-3 | y | x+1 | x |
1 | 4 | 5 | 4 |
5 | 8 | 1 | 0 |
-1 | 2 | -5 | -6 |
-5 | -2 | -1 | -2 |
Vậy x=4 thì y=4
y=8 thì x=0
y=2 thì x=0
y=2 thì x=-6
y=-2 thì x=-2
b)x.y-y+x=4
y.(x-1)+x=4
y.(x-1)+(x-1)=4-1
x-1.(y+1)=3
suy ra x-1.(y+1) thuộc Ư(3)={-1;1;3;-3}. Ta có bảng sau
x-1 | x | y+1 | y |
1 | 2 | 3 | 2 |
3 | 4 | 1 | 0 |
-1 | 0 | -3 | -4 |
-3 | -2 | -1 | -2 |
Tự kết luận nhé
Tìm số nguyên x ; y biết : x.y -x + 2.y = 3
X=0 Y=05
Vì 0,5-0+2,5=3
chắc chắn luôn ý
tìm số nguyên x;y biết: x.y-x-y=2
Ta có:
x.y-x.1-y=x.(y-1)-y
=x.(y-1)-(y-1).1-1
=>(x-1).(y-1)-1=2
=>(x-1).(y-1)=3
=>x-1\(\in\)Ư(3)
y-1\(\in\)Ư(3)
Mà Ư(3)={-3;-1;1;3}
Ta có bảng sau:
y-1 | y | x-1 | x |
-3 | -2 | -1 | 0 |
-1 | 0 | -3 | -2 |
1 | 2 | 3 | 4 |
3 | 4 | 1 | 2 |
Vậy (x;y)\(\in\){(0;-2);(-2:0);(4:2);(2;4)}
tìm x,y là số nguyên biết x.y=2.x+y
\(xy=2x+y\Rightarrow xy-2x-y=0\)
\(\Rightarrow xy-2x-y+2=2\)
\(\Rightarrow x\left(y-2\right)-\left(y-2\right)=2\Rightarrow\left(x-1\right)\left(y-2\right)=2\)
Ta xét ước của 2
\(Ư\left(2\right)=\left\{\pm1;\pm2\right\}\)
TH1 \(\hept{\begin{cases}x-1=1\\y-2=2\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
TH2 \(\hept{\begin{cases}x-1=2\\y-2=1\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)
TH3 \(\hept{\begin{cases}x-1=-2\\y-2=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
TH4 \(\hept{\begin{cases}x-1=-1\\y-2=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy...
tìm cặp số nguyên x và y thỏa mãn x + y +x.y =2
x + y + xy = 2
=> x + y + xy +1 = 3
=> (x +1 ) + ( y + xy ) = 3 => ( x + 1).( y + 1) = 3
=> ( x +1) và ( y +1 ) thuộc Ư (3) ={ -3 ; -1 ; 1; 3 }
xét : x + 1 = -1 và y +1 = -3 => x = -2: y = -4
các con khác làm tương tự