so sanh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\) biết a,b,c thuộc N*
So sanh A và B
A=\(\frac{n}{n+1}\)+\(\frac{n+1}{n+2}\)
B=\(\frac{2n+1}{2n+3}\)(n thuộc N sao)
cần gấp
Ta có : \(A=\frac{n}{n+1}+\frac{n+1}{n+2}\)
\(B=\frac{n}{2n+3}+\frac{n+1}{2n+3}\)
Do \(2n+3>n+1;n+2\)(n khác 0)
\(n=n;n+1=n+1\)
Vì mẫu lớn hơn và tử bằng nhau suy ra
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{2n+3}+\frac{n+1}{2n+3}=B\)
\(< =>A>B\)
a) cho a,b,n thuoc N* hay so sanh \(\frac{a+n}{b+n}va\frac{a}{b}\)
b) cho A=\(\frac{10^{11}-1}{10^{12}-1}\); B= \(\frac{10^{10}+1}{10^{11}+1}\)so sánh A và B
a)Cho a,b,n thuoc N*.Hay so sanh$\frac{a+n}{b+n}$a+nb+n va $\frac{a}{b}$ab
b)Cho A=$\frac{10^{11}-1}{10^{12}-1}$1011−11012−1
B=$\frac{10^{10}+1}{10^{11}+1}$1010+11011+1
Hay so sanh A va B
Xin lỗi mink mới học lớp 5 thôi không giúp bạn được nhưng mong bạn vẫn k cho mink thank you very much!!!!
a)Cho a,b,n thuoc N*.Hay so sanh\(\frac{a+n}{b+n}\) va \(\frac{a}{b}\)
b)Cho A=\(\frac{10^{11}-1}{10^{12}-1}\)
B=\(\frac{10^{10}+1}{10^{11}+1}\)
Hay so sanh A va B
Cho a, b thuộc N* . Hãy so sánh \(\frac{a+n}{b+n}và\frac{a}{b}\)
Từ \(\frac{a}{b}\)> 1, Suy ra: an < bn
Suy ra: an + ab < bn + ab
Suy ra: a (n + b) < b (n + a)
Suy ra: \(\frac{a}{b}\)> \(\frac{a+n}{b+n}\)
Nhầm, Suy ra: an > bn
Suy ra: an + ab > bn + ab
Suy ra: a (n + b) > b (n + a)
nếu a=b=>\(\frac{a+n}{b+n}\)=\(\frac{a}{b}\)
nếu a>b=>\(\frac{a+n}{b+n}\)>\(\frac{a}{b}\)
nếu a<b=>\(\frac{a+n}{b+n}\)<\(\frac{a}{b}\)
Cho a thuộc Z, b thuộc Z , b > 0 , n thuộc N*. Hãy so sánh hai số hữu tỉ \(\frac{a}{b}và\frac{a+n}{b+n}\)
(+) Th1 : a = b
=> \(\frac{a}{b}=1\) và \(\frac{a+n}{b+n}=1\)
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
(+) th2 : a < b
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
Vì a < b và n thuộc N* => an < bn => ab + an < ab + bn => \(\frac{ab+an}{b\left(b+n\right)}
Ta có: a/b<a+n/b+n <=> a(b+n)<b(a+n)
<=> a.b+a.n<b.a+b.n
<=> a.n<b.n
<=> a<b =>a/b<a+n/b+n <=> a<b
Tương tự: a/b>a+n/b+n <=> a>b
Cho a;b;c thuộc N* ; a<b<c và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n\) với n thuộc N* . Tìm a,b,c
a) Cho a,b,n thuộc N* . So sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b) Cho các số hữu tỉ : x=\(\frac{a}{b}\) ; y=\(\frac{c}{d}\); z= \(\frac{m}{n}\)(b,d,n >0) . Biết ad - bc = 1 và cn - dm = 1.
* So sánh các số x; y; z
* So sánh y với t, biết t=\(\frac{a+m}{b+n}\) ( với b + n khác 0)
Cho a, b ,n thuộc N* Hãy so sánh \(\frac{a+n}{b+n}và\frac{a}{b}\)
nếu a/b <1 suy ra a/b<a+n/b+n
nếu a/b>1 suy ra a/b>a+n/b+n