Tính Nhanh
M= 2/ 3.5 + 2/ 5.7 + 2/ 7.9 +......+ 2/ 97 . 99
Tính nhanh:
M= 2/3.5 +2/5.7 + 2/7.9 + ....2/97. 99
Ta có: \(\frac{2}{3.5}=\frac{5-3}{3.5}=\frac{5}{3.5}-\frac{3}{3.5}=\frac{1}{3}-\frac{1}{5}\)
\(\frac{2}{5.7}=\frac{7-5}{5.7}=\frac{7}{5.7}-\frac{5}{5.7}=\frac{1}{5}-\frac{1}{7}\)
..................................................................
\(\frac{2}{97.99}=\frac{99-97}{97.99}=\frac{99}{97.99}-\frac{97}{97.99}=\frac{1}{97}-\frac{1}{99}\)
Vậy \(M=\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{95.97}+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\left(\frac{1}{5}-\frac{1}{5}\right)-\left(\frac{1}{7}-\frac{1}{7}\right)-...-\left(\frac{1}{95}-\frac{1}{95}\right)-\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
=\(\frac{1}{3}-\frac{1}{99}\)
=\(\frac{33}{99}-\frac{1}{99}\)
=\(\frac{23}{99}\)
M = 2/3.5+2/5.7+2/7.9+...+2/97.99
= 1/2(2/3-2/5+2/5-2/7+2/7-2/9+...+2/97-2/99)
= 1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99
= 1/3 - 1/99
= 33/99-1/99
= 32/99
đúng nha
Tính:
a) M=2/3.5+2/5.7+2/7.9+...+2/97.99
b) N=3/5.7+3/7.9+3/9.11+...+3/197.199
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn
-2/3+4/3.5+4/5.7+4/7.9+....+4/97.99+101/99
B=-2/3+4/3.5+4/5.7+4/7.9+.......+4/97.99+101/99
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}\dfrac{2}{7.9}+.........+\dfrac{2}{99.101}\)
\(P=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)
Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{15}\)
\(=\dfrac{4}{15}\)
Câu 1:
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
= \(\dfrac{1}{3}-\dfrac{1}{101}\)
= \(\dfrac{98}{303}\)
Câu 2 làm tương tự ở câu 1 nhé
tính tổng S=2/1.3+2/3.5+2/5.7+2/7.9+2/9.11
\(S=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)
\(=\dfrac{1}{1}-\dfrac{1}{11}=\dfrac{11}{11}-\dfrac{1}{11}=\dfrac{10}{11}\)
1.Tính hợp lí
a/ 2/3.5 + 2/5.7 + 2/7.9 +...+2/97.99
b/ 1/3.5 + 1/5.7 + 1/7.9 +...+1/97.99
c/1/18 + 1/54 + 1/108 +...+1/990
2.Chứng minh rằng: 1/14 + 1/42 + 1/43 +...+1/79 + 1/80 > 7.12
các bạn cho mk hỏi câu này
2/3.5+2/5.7+2/7.9+...+2/97.99
thì mk sẽ viết thành
1/3.5+1/5.7+1/7.9+...+1/97.99
hay
2.(1/3.5+1/5.7+1/7.9+...+1/97.99)
giúp mk với
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99
tính B = 2/3.5 + 2/5.7 + 2/7.9 + ... + 2/37.39
\(B=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{37.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{37}-\frac{1}{39}=\frac{1}{3}-\frac{1}{39}=\frac{12}{39}=\frac{4}{13}\)