tìm gtnn của\(p=\left|2013-x\right|+\left|2014-x\right|\)
a) tìm x biết:\(2014.\left|x-12\right|+\left(x-12\right)^2=2013.\left|12-x\right|\)
b) tìm giá trị lớn nhất của biểu thức :\(A=\frac{3}{\left(x+2\right)^2+4}\)
Tìm GTNN:
\(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
giá trị nhỏ nhất là 0
vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0
dấu bằng xảy ra khi
x - 2013 = 0
x-2014=0
x-2015=0
vậy không có giá trị của x thỏa mãn giá trị nhỏ nhất của biểu thức
Gọi biểu thức trên là A
Ta thấy
A=/x-2013/+/2014-x/+/x-2015/ sẽ lớn hơn hoặc bằng:
/x-2013+2014-x/=/1/=1
Min A=1
GTNN của biểu thức là 2 khi và chỉ khi x=2014
tìm GTNN của A=\(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)
\(\ge x-2013+0+2015-x=2\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2015\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\)\(\Rightarrow x=2014\)
Vậy với \(x=2014\) thì \(A_{MIN}=2\)
Ta có :
A=|x-2013|+|x-2014|+|x-2015|
<=> A=|2013-x|+|x-2014|+|x-2015|
>hoặc =|2013-x+x+2015|+|x-2014
=|2|+|x-2015|=2+|x-2015|
=>GTNN của A =2 khi :
|x-2015|=0=>x-2015=0=>x=2015
Vậy GTNN của A=2 khi x=2015
Tìm GTNN của biểu thức:
\(P=\left|2013-x\right|+\left|2014-x\right|.\)
có \(P=|2013-x|+|2014-x|\)
=\(|2013-x|+|x-2014|\)
\(\Rightarrow P\ge|2013-x+x-2014|=|-1|=1\)
\(\Rightarrow MinP=1\Leftrightarrow Dấu=xảyra\)\(\Leftrightarrow\left(2013-x\right)\left(x-2014\right)\ge0\)
\(\Leftrightarrow2013\le x\le2014\)
kb với mk nha!!!!!!!! ^_^ ^_^
\(P=\left|2013-x\right|+\left|2014-x\right|\)
\(P=\left|x-2013\right|+\left|2014-x\right|\)
Ta có: \(\hept{\begin{cases}\left|x-2013\right|\ge x-2013\\\left|2014-x\right|\ge2014-x\end{cases}}\Rightarrow P\ge x-2013+2014-x=1\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-2013\right|=x-2013\\\left|2014-x\right|=2014-x\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2013\ge0\\2014-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}\Leftrightarrow}2013\le x\le2014}\)
Vậy \(P_{min}=1\Leftrightarrow2013\le x\le2014\)
Tìm GTNN của biểu thức:
\(P=\left|2013-x\right|+\left|2014-x\right|\)
Tìm GTNN của biểu thức:
P=|2013−x|+|2014−x|
P=|x-2013|+|2014−x|
ÁP DỤNG: |A|+|B| >=|A+B|
=> |x-2013|+|2014−x|>=|x-2013+2014-x|
=> |x-2013|+|2014−x|>=1
Vậy P >= 1
Tự xét dấu = xảy ra
Vậy P min =1
Ta có: \(P=|2013-x|+|2014-x|=|2013-x|+|x-2014|\ge|2013-x+x-2014|=|-1|=1\)
\(\Rightarrow minP=1\Leftrightarrow\left(2013-x\right)\left(x-2014\right)\ge0\)
\(TH1:\hept{\begin{cases}2013-x\le0\\x-2014\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2013\\x\le2014\end{cases}}\Rightarrow2013\le x\le2014\)
\(TH2:\hept{\begin{cases}2013-x>0\\x-2014>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2013\\x>2014\end{cases}}\Rightarrow\)vô lý
Vậy \(minP=1\Leftrightarrow2013\le x\le2014\)
( min là GTNN )
Giải phương trình 0,05(\(\left(\frac{2x-2}{2011}+\frac{2x}{2012}+\frac{2x+2}{2013}\right)=3,3-\left(\frac{x-1}{2011}+\frac{x}{2012}+\frac{x+1}{2013}\right)\)
bài 2 Tìm GTNN của biểu thức A=\(\text{x^2-5x+y^2+xy-4y+2012}\)
Tìm giá trị nhỏ nhất của A= \(\left|x-2014\right|+\left|2015-x\right|+\left|x-2016\right|\)
Bài 1: Tìm số nguyên x sao cho: \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
Bài 2: Tìm GTNN của: \(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\) với \(a< b< c< d\)
Bài 1:
Ta có : \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-10\right)\right].\left[\left(x^2-4\right)\left(x^2-7\right)\right]< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Đặt \(y=x^4-11x^2+19\), ta có : \(\left(y-9\right)\left(y+9\right)< 0\)
\(\Leftrightarrow y^2< 81\Leftrightarrow-9< y< 9\) \(\Leftrightarrow\hept{\begin{cases}y>-9\left(1\right)\\y< 9\left(2\right)\end{cases}}\)
Giải (1) được : \(x^4-11x^2+28>0\) \(\Leftrightarrow\left(x^2-7\right)\left(x^2-4\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2>7\\x^2< 4\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>\sqrt{7}\\x< -\sqrt{7}\end{cases}}\)hoặc \(-2< x< 2\)
Giải (2) được :
\(\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>10\end{cases}}\)(loại) hoặc \(1< x^2< 10\)(nhận)
\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 10\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x< -1\\x>1\end{cases}}\)và \(-\sqrt{10}< x< \sqrt{10}\)
\(\Rightarrow\orbr{\begin{cases}-\sqrt{10}< x< -1\\1< x< \sqrt{10}\end{cases}}\)
Kết hợp (1) và (2) : \(-2< x< -1\);;\(1< x< 2\); \(\sqrt{7}< x< \sqrt{10}\); \(-\sqrt{10}< x< -\sqrt{7}\)
Suy ra các giá trị nguyên của x là : \(x\in\left\{-3;3\right\}\)
Bài 1:
Có: \(x^2-10< x^2-7< x^2-4< x^2-1\)
Để tích trên < 0
: \(\left(x^2-1\right);\left(x^2-4\right);\left(x^2-7\right)\)cùng dương và \(\left(x^2-10\right)\)âm
\(\Rightarrow x^2-10< 0\)và\(x^2-7>0\)
\(\Rightarrow x^2< 10\)và \(x^2>7\)
\(\Rightarrow7< x^2< 10\)
\(\Rightarrow x^2=9\Rightarrow x=+;-3\)
Câu hỏi của Bui Cam Lan Bui - Toán lớp 7 - Học toán với OnlineMath
Tìm GTNN(GTNN) của biểu thức:
\(G=\frac{\left|x\right|+3}{\left|x\right|+2}\)
\(H=\left(x-0,1\right)^{100}+\left|y-x+0,3\right|-2015\)
\(K=\left|x-1\right|+\left|x-2001\right|+5\)