Tìm số nguyên N sao cho phân số 4/2n-3 có giá trị là so nguyên
1.Cho A=2n+3/n,n thuộc Z
a) Với giá trị nào của n thì A là phân số
b)Tìm giá trị n để A là số nguyên
2.Tìm số nguyên sao cho phân số 3n-1/3n-4 nhận giá trị nguyên
3)So sánh các phân số 6 a+1/a+2 và a+2/a+3
Tìm tất cả các số nguyên n sao cho phân số sau có giá trị là số nguyên
\(\dfrac{2n+5}{n-3}\)
\(\dfrac{2n+5}{n-3}=\dfrac{\left(2n-6\right)+11}{n-3}=\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\)
Để biểu thức trên là số nguyên thì \(\dfrac{11}{n-3}\) nguyên\(\Rightarrow11⋮\left(n-3\right)\)\(\Rightarrow n-3\inƯ\left(11\right)\)
Ta có bảng:
n-3 | -11 | -1 | 1 | 11 |
n | -8 | 2 | 4 | 14 |
Vậy \(n\in\left\{-8;2;4;14\right\}\)
\(\dfrac{2n+5}{n-3}=2+\dfrac{11}{n-3}\left(n\ne3\right).\)
Để \(\dfrac{2n+5}{n-3}\in Z.\Leftrightarrow n-3\inƯ\left(11\right)\) \(=\left\{1;-1;11;-11\right\}.\)
\(\Rightarrow n\in\left\{4;2;14;-8\right\}.\)
Bài 15. Cho phân số A= 2n+ 3 / 6n +4 (n thuộc N) . Với giá trị nào của n thì A rút gọn được.
Bài 16. Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên
A) 12/3n-1
b)2n+3/7
c)2n+5 / n-3
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
tìm số nguyên n sao cho phân số 2n-1/3n-4 có giá trị nguyên
bạn tách 1 phần ở tử tương đương vs 1 phần ở mẫu để ko có n là đc. còn cụ thể thế nào thì mk ko bt. sorry nha
Tìm các số nguyên n sao cho các phân số sau có giá trị là số nguyên:
a)2n+3/7
Để phân số :\(\frac{2n+3}{7}\) có giá trị là số nguyên thì 2n+3:7
\(\implies\) \(2n+3=7k\)
\(\implies\) 2n=7k-3
\(\implies\) n=\(\frac{7k-3}{2}\)
Vậy với mọi số nguyên n có dang \(\frac{7k-3}{2}\) thì phân số \(\frac{2n+3}{7}\) có giá trị là số nguyên
Cho biểu thức A= \(\dfrac{2n+1}{n-2}\)
a) Tìm điều kiện của số nguyên n để A là một phân số. Tính giá trị của A khi n= -2.
b)Tìm các số nguyên n sao cho phân số A có giá trị là một số nguyên.
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
Cho n là một số nguyên.
a) Với giá trị nào của n thì 4/2n là phân số?
b) Tìm các giá trị của n để 4/2n có giá trị là số nguyên?
2n\(\ne\) 0
2n=0
n=0/2=0
=>n\(\ne\) 2 thì 4/2n là phân số
để 4/2n là số nguyên thi 4\(⋮\) 2n
=>2n\(\in\) Ư (4)
2n=1
n=1/2 loại
2n=2
n=2/2=1 chọn
2n=4
n=4/2=2 chọn
tìm tất cả số nguyên n sao cho ccas phân số sau có giá trị số nguyên
\(\dfrac{2n+5}{n-3}\)
\(\dfrac{2n+5}{n-3}=\dfrac{2n-6+11}{n-3}=\dfrac{2n-6}{n-3}+\dfrac{11}{n-3}=2+\dfrac{11}{n-3}\left(ĐKXĐ:x\ne3\right)\)
Để 2n+5/n-3 nguyên thì 11/n-3 nguyên hay \(n-3\inƯ\left(11\right)\)
Xét bảng :
n-3 | n |
1 | 4 |
-1 | 2 |
11 | 14 |
-11 | -8 |
Vậy để 2n+5/n-3 nguyên thì \(n\in\left\{-8;2;4;14\right\}\)
Tìm các số nguyên n sao cho phân số \(\frac{2n+1}{n^2-3}\)có giá trị là số nguyên