\(A=\frac{1}{1x2x3}+\frac{1}{2x3x4}+...\frac{1}{36x37x38}+\frac{1}{37x38x39}=?\)
\(A=\frac{1}{1x2x3}+\frac{1}{2x3x4}+...+\frac{1}{36x37x38}+\frac{1}{37x38x39}\)
Tìm A
\(A=\frac{1}{1x2x3}+\frac{1}{2x3x4}+...\frac{1}{36x37x38}+\frac{1}{37x38x39}\)chú ý đây là tính nhanh
A=\(\frac{1}{1x2x3}+\frac{1}{2x3x4}+...+\frac{1}{37x38x39}\)
=\(\frac{1}{2}x\left(\frac{1}{1x2}-\frac{1}{2x3}+\frac{1}{2x3}-\frac{1}{3x4}+...+\frac{1}{37x38}-\frac{1}{38x39}\right)=\frac{1}{2}x\left(\frac{1}{2}-\frac{1}{38x39}\right)=\frac{185}{741}\)
1 . tính nhanh
\(A=\frac{1}{1x2x3}+\frac{1}{2x3x4}+\frac{1}{3x4x5}+...+\frac{1}{36x37x38}+\frac{1}{37x38x39}\)
giúp nha
\(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{36\times37\times38}+\frac{1}{37\times38\times39}\)
\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{36\times37\times38}+\frac{2}{37\times38\times39}\)
\(2A=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{37\times38}-\frac{1}{38\times39}\)
\(2A=\frac{1}{1\times2}-\frac{1}{38\times39}\)
\(2A=\frac{741}{1482}-\frac{1}{1482}\)
\(2A=\frac{370}{741}\)
\(A=\frac{370}{741}:2=\frac{185}{741}\)
\(A=\frac{1}{1x2x3}+\frac{1}{2x3x4x}+\frac{1}{3x4x5}+...+\frac{1}{36x37x38}+\frac{1}{37x38x39}\)
giúp nha
A = 2/1x2x3 + 2/2x3x4 + 2/3x4x5 + ... + 2/36x37x38 + 2/37x38x39
A = 1/1x2 - 1/2x3 + 1/2x3 - 1/3x4 + 1/3x4 - 1/4x5 + ...+ 1/36x37 - 1/37x38 + 1/37x38 - 1/38x39
A = 1/2 - 1/38x39
A = 370/741
Tớ ko chắc là đúng đâu
\(\frac{1}{1x2x3}+\frac{1}{2x3x4}+\frac{1}{3x4x5}+....+\frac{1}{37x38x39}\)
2/1x2x3 + 2/2x3x4 + 2/3x4x5 + ... + 2/36x37x38 + 2/37x38x39
2/1×2×3 + 2/2×3×4 + 2/3×4×5 + ... + 2/36×37×38 + 2/37×38×39
= 1/1×2 - 1/2×3 + 1/2×3 - 1/3×4 + 1/3×4 - 1/4×5 + ... + 1/36×37 - 1/37×38 + 1/37×38 - 1/38×39
= 1/1×2 - 1/38×39
= 1/2 - 1/1482
= 370/741
\(\text{Ta có: }\) \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}+....+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{2}-\frac{1}{38.39}\)
\(=\frac{1}{2}-\frac{1}{1482}\)
\(=\frac{370}{741}\)
tính nhanh
C=\(\frac{1}{1x2x3}\) +\(\frac{1}{2x3x4}\)+\(\frac{1}{3x4x5}\)+..........+\(\frac{1}{37x38x39}\)
D=\(\frac{1}{3}\)+\(\frac{1}{3^2}\)+\(\frac{1}{3^3}\)+.....+\(\frac{1}{3^8}\)
\(2C=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{38.39}\)
\(C=\frac{617}{1482}\)
\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3D-D=1-\frac{1}{3^8}\)
\(D=\frac{1}{2}-\frac{1}{2.3^8}\)
Ta có:\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{38.39}\right)\)
b,\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
\(\Rightarrow3D=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^7}\)
\(\Rightarrow2D=1-\frac{1}{3^8}\)
\(\Rightarrow D=\frac{3^8-1}{3^8}:2\)
Ta có :
\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{4.5.6}+...+\frac{1}{37.38.39}\)
\(2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2C=\frac{1}{2}-\frac{1}{38.39}\)
\(C=\frac{\frac{1}{2}-\frac{1}{38.39}}{2}\)
\(C=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{38.39}\right)\)
\(C=\frac{1}{2}.\frac{370}{741}\)
\(C=\frac{185}{741}\)
\(A=\frac{1}{1x2x3}+\frac{1}{2x3x4}+...+\frac{1}{2018x2019x2020}+\frac{1}{2x2019x2020}\)
A=?
Trả lời:
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2018.2019.2020}+\frac{1}{2.2019.2020}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2018.2019.2020}+\frac{2}{2.2019.2020}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2018.2019}-\frac{1}{2019.2020}+\frac{1}{2019.2020}\right)\)
\(A=\frac{1}{2}.\frac{1}{1.2}\)
\(A=\frac{1}{4}\)
\(\frac{1}{1x2x3}+\frac{1}{2x3x4}+\frac{1}{3x4x5}+...+\frac{1}{48x49x50}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+......+\frac{1}{48.49.50}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)\)
\(=\frac{1}{2}.\frac{612}{1225}=\frac{612}{2450}=\frac{306}{1225}\)
Do not ask why hay quá!
Đặt \(T=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
Ta xét:
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{1}{1.2.3}\);\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{1}{2.3.4}\);. . . ; \(\frac{1}{48.49}-\frac{1}{49.50}=\frac{1}{48.49.50}\)
Rút ra dạng tổng quát,ta có: (mình nói thêm nhé)
\(\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
Ta nhận thấy: \(-\frac{1}{2.3}+\frac{1}{2.3}=0\);\(-\frac{1}{3.4}+\frac{1}{3.4}=0\);.....
\(\Rightarrow2T=\frac{1}{1.2}-\frac{1}{49.50}=\frac{612}{1225}\)
\(\Rightarrow T=\frac{612}{\frac{1225}{2}}=\frac{306}{1225}\)
Vậy .. . .
ta co:1/1*2*3=(1/1*2-1/2*3):2
1/2*3*4=(1/1*2-1/2*3):2
...
cu nhu the cho den:
1/98*99*100=(1/98*99-1/99*100):2
suy ra : 1/1*2*3+1/2*3*4+1/3*4*5+...+1/98*99*100
=(1/1*2-1/2*3):2+(1/2*3-1/3*4):2+...+(1/98*99-1/99*100):2
=(1/1*2-1/2*3+1/2*3-1/3*4+...+1/98*99-1/99*100):2
=(1/1*2-1/99*100):2
=(1/2-1/9900)
=(4950/9000-1/9000):2
=4949/9000:2
=4949/18000
học tốt