Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Anh Vương
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2023 lúc 19:36

SỬa đề: \(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+...+\dfrac{4}{23\cdot27}\)

\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{23}-\dfrac{1}{27}\)

=1/3-1/27

=8/27

Hoàng Đạt
Xem chi tiết
Sahara
14 tháng 2 2023 lúc 20:07

\(A=\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+\dfrac{4}{15.19}+\dfrac{4}{19.23}+\dfrac{4}{23.27}\)(Dấu . là dấu nhân)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{27}\)
\(=\dfrac{1}{3}-\dfrac{1}{27}\)
\(=\dfrac{9}{27}-\dfrac{1}{27}\)
\(=\dfrac{8}{27}\)

A = 4/3x7 + 4/7x11+ 4/11x15 + 4/15x19 + 4/19 x23 + 4/23 x 27

A = 1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23 -1/27

A = 1/3 - 1/27

A = 8/27

nguyễn quỳnh anh
Xem chi tiết
sogouku1
Xem chi tiết
Nguyễn Hà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 4 2021 lúc 23:00

Ta có: \(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{23\cdot27}\)

\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{23}-\dfrac{1}{27}\)

\(=\dfrac{1}{3}-\dfrac{1}{27}=\dfrac{8}{27}\)

Member lỗi thời :>>...
16 tháng 8 2021 lúc 8:55

\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{100.104}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)

\(=\frac{1}{3}-\frac{1}{104}=\frac{104}{312}-\frac{3}{312}=\frac{101}{312}\)

Khách vãng lai đã xóa
Nguyễn Lê Phương Anh
Xem chi tiết
Nguyễn Mạnh Tuấn
23 tháng 1 2016 lúc 19:45

\(C=\frac{4}{3x7}+\frac{4}{7x11}+\frac{4}{11x15}+\frac{4}{15x19}+\frac{4}{19x23}+\frac{4}{23x27}\)

     = 1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23-1/27

     =1/3-(1/7+1/7)-(1/11+1/11)-(1/15-1/15)-(1/19+1/19)-(1/23-1/23)-1/27

    =1/3-1/27

   =...

=8/27

Nguyễn Thị Hà My
Xem chi tiết
❡ʀ¡ی♬
29 tháng 6 2017 lúc 9:10

Ta có :

\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{23.27}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{23}-\frac{1}{27}\)

\(=\frac{1}{3}-\frac{1}{27}==\frac{9}{27}-\frac{1}{27}=\frac{8}{27}\)

Mạnh Lê
29 tháng 6 2017 lúc 9:10

Đặt \(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}++\frac{4}{19.23}+\frac{4}{23.27}\)

\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)

\(A=\frac{1}{3}-\frac{1}{27}\)

\(A=\frac{8}{27}\)

Đức Phạm
29 tháng 6 2017 lúc 9:10

\(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+\frac{4}{15\cdot19}+\frac{4}{19\cdot23}+\frac{4}{23.27}\)

\(=\frac{4}{4}\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)\)

\(=\frac{4}{4}\cdot\left(\frac{1}{3}-\frac{1}{27}\right)\)

\(=\frac{4}{4}\cdot\frac{8}{27}=\frac{8}{27}\)

Đào Thị Hương Lan
Xem chi tiết
Đinh Anh Thư
16 tháng 8 2017 lúc 9:06

a)\(A=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)

\(\frac{1}{2}xA=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)

\(\frac{1}{4}xA=\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}\)

\(\frac{1}{4}xA-\frac{1}{2}xA=\frac{1}{3}-\frac{1}{384}\)

\(\frac{1}{4}xA=\frac{127}{384}\)

\(A=\frac{127}{384}:\frac{1}{4}\)

\(A=\frac{127}{96}\)

Không Tên
15 tháng 10 2018 lúc 18:41

\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)

\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)

\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)

\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(=9-\left(1-\frac{1}{10}\right)\)

\(=9-\frac{9}{10}=\frac{81}{10}\)

Nguyễn Hồng Phúc
Xem chi tiết