cho A1-1/2^2-1/3^2-1/4^2-1/5^2...-1/2010^2. chứng tỏ A>1/2014
Bài 1:So sánh 20142014 + 1/20142015 + 1 và 20142013 + 1/20142014 + 1. Bài 2: a) chứng tỏ rằng: D=1/22 + 1/32 + 1/42 +....+1/102 < 1. b)chứng tỏ rằng: E=1/101+1/102+...+1/299+1/300>2/3.C)chứng tỏ rằng: F=1/5+1/6+1/7+...+1/17 < 2
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
Cho A = 1/5 + 1/5^2 + 1/5^3 +....+ 1/5^2014 . Chứng tỏ rằng A < 1/4
\(A=\frac{1}{5}+\frac{1}{5^2}+........+\frac{1}{5^{2014}}\)
\(\Rightarrow5A=1+\frac{1}{5}+...........+\frac{1}{5^{2013}}\)
\(\Rightarrow5A-A=1+...........+\frac{1}{5^{2013}}-\frac{1}{5}+...........+\frac{1}{5^{2014}}\)
\(\Rightarrow4A=1-\frac{1}{5^{2014}}\)
\(\Rightarrow4A< 1\Rightarrow A< \frac{1}{4}\)
=> 5A = 1 + 1/5 +...+1/5^2013
=>4A= 1- 1/5^2014
=> 4A< 1 => A < 1/4
Cho biểu thức:
A=1+2+2^2+2^3+2^4+.........+2^2009
Chứng tỏ (A+1)×5^2010 là một số chính phương?
Cho biểu thức : A= 1+2+2^3 + 2^4 + ...+2^2009
Chứng tỏ (A+1) . 5^2010 là một số chính phương
\(\text{Cho }A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}\text{ Chứng tỏ }A< \frac{3}{4}\)
\(n^2>\left(n-1\right)\left(n+1\right)\Rightarrow\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right).\)
Do đó: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2012.2014}+\frac{1}{2013.2015}=\)
\(=\frac{1}{2}[1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2015}]=\)
\(=\frac{1}{2}[1+\frac{1}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{1}{2}[\frac{3}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{3}{4}-\frac{1}{2}\left(\frac{1}{2014}+\frac{1}{2015}\right)< \frac{3}{4}.\)
A) Chứng minh: A=2^1+2^2+2^3+2^4+.........+2^2010 chia hết cho 3 và 7
B)Chứng minh:B=3^1+3^2+3^3+3^4+..........+2^2010 chia hết cho 4 và 13
C) Chứng minh C=5^1+5^2+5^3+5^4+.......+5^2010 chia hết cho 6 và 31
D) Chứng minh D=7^1+7^2+7^3+7^4+........+7^2010 chia hết cho 8 và 57
a/ Chứng minh: A = 2^1 + 2^2 + 2^3 + 2^4 +......+ 2^2010 chia hết cho 3 và 7
b/ Chứng minh: B = 3^1 + 3^2 + 3^3 + 3^4 +......+ 3^2010 chia hết cho 4 và 13
c/ Chứng minh: C = 5^1 + 5^2 + 5^3 + 5^4 +......+ 5^2010 chết hết cho 6 và 31
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
Mà câu c bạn đánh chia hết thành chết hết rồi kìa
cho biểu thức:
A=1+2+22+23+24+......+22009
chứng tỏ (A+1).52010 là 1 số chính phương
\(A=2^{2010}-1\) cái này cần trả lời tiếp
\(\left(A+1\right).5^{2010}=\left(2^{2010}-1+1\right).5^{2010}=2^{2010}.5^{2010}=10^{2010}=\left(10^{1005}\right)^2=dpcm\)
a,Chứng minh:A=2^1+2^2+2^3+...+2^2010 chia hết cho 3 và 7.
b,Chứng minh:B=3^1+3^2+3^3+...+2^2010 chia hết cho 4 và 3.
c,Chứng minh:C=5^1+5^2+5^3+...+5^2010 chia hết cho 6 và 31.
d,CHứng minh:D=7^1+7^2+7^3+7^4+...7^2010 chia hết cho 8 và 57.