Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Thị Bích Tuyền
Xem chi tiết
dat14102006
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2022 lúc 15:23

a: Xét ΔADB và ΔAEC có

góc BAD chung

AB=AC

góc ABD=góc ACE

Do đó: ΔADB=ΔAEC

b: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

=>BEDC là hình thang

mà góc EBC=góc DCB

nên BEDC là hình thang cân

Xét ΔEDB có góc EDB=góc EBD(=góc DBC)

nên ΔEDB cân tại E

=>BE=ED=DC

Nguyễn Ngọc Tường Vy
Xem chi tiết
Trần Viết Dũng
31 tháng 10 2016 lúc 19:53

mi sao ngu thế! middusng là ngu thật

vũ tiền châu
28 tháng 7 2017 lúc 21:05

đúng là ngu thật dễ thế mà không ra

Nguyễn Thị Yến Vy
2 tháng 8 2017 lúc 22:25

Hai tam giác ABD và ACE đồng dạng và có 2 cạnh AB,AC bằng nhau nên bằng nhau => AD=AE=> DE song song BC và DC=BE =>BEDC là hình thang cân 

Hai góc sole DEC và ECB bằng nhau mà ECD=ECB => DEC = ECD => Tam giác DEC cân => DE=DC => BEDC có đáy nhỏ bằng cạnh hai bên.

Lê Thị Liêm Anh
Xem chi tiết
hina
Xem chi tiết
doan thi khanh linh
22 tháng 7 2017 lúc 14:39

ABCED

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

Bài b ko biết hi hi k mình ra

  
Kurosaki Akatsu
22 tháng 7 2017 lúc 14:55

Tiếp câu b .

Có : \(\Delta ABC\) cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)         (1)

Theo tổng 3 góc trong 1 tam giác :

Với \(\Delta ABC\) => \(\widehat{ABC}+\widehat{ACB}+\widehat{A}=180^0\)

=> \(\widehat{ABC}+\widehat{ACB}=130^0\)

Lại có (1) 

=> \(\widehat{ABC}=\widehat{ACB}=\frac{130^0}{2}=65^0\)

Vì tứ giác là hình thang cân (chắc cũng biết tứ giác nào nhỉ :v )

=> ED // BC

=> \(\widehat{DEB}+\widehat{EBC}=180^0\)

=> \(\widehat{DEB}=180^0-65^0=115^0\)

Tương tự với góc \(\widehat{EDC}\)

hina
22 tháng 7 2017 lúc 14:58

mik cam on hai ban nhung mik chi co the chon mot lan thoi thong cam nghen

Hồ Khánh Hùng
Xem chi tiết
truc
Xem chi tiết
Trần Viết Dũng
31 tháng 10 2016 lúc 19:51

8iu9liu84l89iul8ui4

Huy Hoang
7 tháng 7 2020 lúc 15:15

E D A B C 1 2 1 2 1

- Chứng minh tứ giác BCDE là hình thang cân:

+ \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

BD là tia phân giác của \(\widehat{B}\Rightarrow\widehat{B_1}=\widehat{B_2}=\frac{1}{2}.\widehat{ABC}\)

CE là tia phân giác của \(\widehat{C}\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{1}{2}.\widehat{ACB}\)

\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)

+) Xét 2 tam giác : AEC và ADB , có :

\(\widehat{A}\)chung

AB = AC

\(\widehat{C_1}=\widehat{B_1}\)

\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)

=> AE = AD ( 2 cạnh tương ứng )

Ta có : AD = AE ( cmt ) nên tam giác ADE cân tại A ( dấu hiệu nhận biết tam giác cân )

\(\Rightarrow\widehat{AED}=\widehat{ADE}\)( tính chất tam giác cân )

Xét tam giác ADE , ta có :

\(\widehat{AED}+\widehat{ADE}+\widehat{A}=180^o\)( định lý tổng 3 góc trong tam giác )

\(\Rightarrow2\widehat{AED}+\widehat{A}=180^o\)

\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Xét tam giác ABC , ta có :

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( định lý tổng 3 góc trong tam giác )

Mà \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

\(\Rightarrow2\widehat{ABC}+\widehat{A}=180^o\)

\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{ABC}\), mà hai góc này là hai góc đồng vị nên suy ra DE // BC ( dấu hiệu nhận biết hai đường thẳng song song )

Do đó BEDC là hình thang (dấu hiệu nhận biết hình thang).

Lại có\(\widehat{ABC}=\widehat{ACB}\)  (chứng minh trên)

Nên BEDC là hình thang cân (dấu hiệu nhận biết hình thang cân)

Ta có:

DE // BC => \(\widehat{D_1}=\widehat{B_2}\) (so le trong)

Lại có \(\widehat{B_2}=\widehat{B_1}\) ( cmt ) nên \(\widehat{B_1}=\widehat{D_1}\)

\(\Rightarrow\Delta EBD\) cân tại E (dấu hiệu nhận biết tam giác cân)

=> EB = ED ( tính chất tam giác cân )

Vậy BEDC là hình thang cân có đáy nhỏ bằng cạnh bên.

Khách vãng lai đã xóa
Đỗ Thành Đạt
Xem chi tiết
Tiên Nguyễn Ngọc
23 tháng 8 2021 lúc 18:06

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

Hok tốt ! Nếu thấy đúng thì k cho mìn !

Khách vãng lai đã xóa
Nguyễn Thúy Hằng
Xem chi tiết
Minh Triều
7 tháng 7 2016 lúc 19:24

A B C E D

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

Sarah
30 tháng 7 2016 lúc 18:24


 

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.

Edogawa Conan
31 tháng 7 2016 lúc 12:43

Ta có : tam giác ABC cân tại A

          BD là phân giác của góc  ABC

          CE là phân giác của góc ACB

=>BD=CE (trong tam giác cân 2 đường phân giác xuất phát từ 2 góc đáy của tam giác bằng nhau . p/s: nếu bạn k bik định lí này bạn có thể chứng minh nhé)

Xét tam giác ABD và tam giác ACE :

 BD=CE (cmt)

góc ABD= góc ACE (góc ABC=góc ACB=2 góc ABD= 2 góc ACE)

AB=BC (tam giác ABC cân tại A)

Suy ra: tam giác ABD= tam giác ACE (c-g-c)

=>AD=AE ( 2 cạnh tương ứng)

=>tam giác ADE cân tại A

Mà tam giác ABC cũng cân tại A nên:

góc ABC = góc ACB= góc ADE= goác ADE

Ta lại có: góc ABC và góc AED ở vị trí đồng vị nên:

ED//BC

=>BEDC là hình thang 

Mà BD=CE 

nên: BEDC là hình thang cân(1)

Ta có: ED//BC => góc DEC = góc ECB

Mà góc ECB= góc DCE ( CE là p/g của góc ACE)

=> góc DEC=góc DCE

=> tam giác DEC cân tại D

=>ED=DC (2)

Từ (1) và (2) suy ra: BEDC là hình thang cân có đáy nhò bằng cạnh bên.