Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bảo Trúc
Xem chi tiết
nguyen thi diem quynh
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
23 tháng 7 2015 lúc 21:59

n3-19n=n3-n-18n=(n2-1)n-18n=(n-1)n(n+1)-18n

trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3

=>(n-1)n(n+1) chia hết cho 3

trong 3 số tự nhiên liên tiếp sẽ có ít nhất 1 số chia hết cho 2

=>(n-1)n(n+1) chia hết cho 2

vì (2;3)=1=>(n-1)n(n+1) chia hết cho 6

=>(n-1)n(n+1)=6k

=>(n-1)n(n+1)-18n=6k-18n=6(k-3n) chia hết cho 6

=>n3-19n chia hết cho 6

=>đpcm

Trần Tuấn Khải
16 tháng 9 2018 lúc 15:09

 A = n³-19n = n³-n - 18n = n(n²-1) - 18n = n(n-1)(n+1) - 18n 
n(n-1)(n+1) là 3 số nguyên liên tiếp nên chia hết cho 3, ngoài ra ít nhất 1 số chẳn nên chia hết cho 2 => n(n-1)(n+1) chia hết cho 6, 18n chia hết cho 6 
=> A chia hết cho 6 

Nguyễn Anh Nhật Tân
Xem chi tiết
Hoàng Trang
Xem chi tiết
Hồ Trương Minh Trí
Xem chi tiết
Hồng Phúc
22 tháng 8 2021 lúc 16:52

a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)

Nếu \(n=3k+1\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)

Nếu \(n=3k+2\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)

Vậy \(n^3-n⋮3\forall n\in Z\)

Nguyễn Hoài Đức CTVVIP
22 tháng 8 2021 lúc 16:57

 n3−n⋮3∀n∈Z

Lấp La Lấp Lánh
22 tháng 8 2021 lúc 17:07

a) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 3

b) \(n\left(n-1\right)\left(2n-1\right)=n\left(n-1\right)\left(n+1+n-2\right)=\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n\)Ta có: \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3, mà(2,3)=1 nên \(\left(n-1\right)n\left(n+1\right)⋮6\) 

Tương tự ta cũng được \(\left(n-2\right)\left(n-1\right)n⋮6\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)+\left(n-2\right)\left(n-1\right)n⋮6\)

\(\Rightarrow n\left(n-1\right)\left(2n-1\right)⋮6\left(đpcm\right)\)

Đoàn Thị Thu Hương
Xem chi tiết
Lê Thị Mai Trang
Xem chi tiết
Hacker Ngui
Xem chi tiết
nguyễn thị ngọc trâm
14 tháng 8 2016 lúc 21:18

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

alibaba nguyễn
14 tháng 8 2016 lúc 21:37

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

nguyễn thị ngọc trâm
14 tháng 8 2016 lúc 21:42

Sao cậu k k cho tớ

Nguyễn Tấn Phát
Xem chi tiết
tth_new
14 tháng 3 2019 lúc 16:58

Do n nguyên và n > 1 nên \(n\ge2\)

Với n = 2 \(n^3-13n=-18⋮6\)

Giả sử đúng với n = k (k>1) tức là \(k^3-13k⋮6\)

Ta chứng minh điều có đúng với n = k + 1

Thật vậy: \(\left(k+1\right)^3-13\left(k+1\right)=k^3+3k^2+3k+1-13k-13\)

\(=\left(k^3-13k\right)+\left(3k^2+3k-12\right)\)

Ta chỉ cần chứng minh: \(3k^2+3k-12⋮6\)

\(\Leftrightarrow3\left(k^2+k\right)⋮6\Leftrightarrow k^2+k⋮2\)

Tới đây xét tính chẵn lẻ nữa là xong=)

Nhân Thành
14 tháng 3 2019 lúc 19:24

n3 -13n = n- n - 12n = n(n2-1) - 12n = (n-1)n(n+1) - 12n

Ta có: (n-1)n(n+1) là 3 số nguyên liên tiếp nên chia hết cho 6 và 12n chia hết cho 6 => n3 -13n \(⋮\)6

Nguyễn Khôi  Nguyên
20 tháng 4 2021 lúc 16:13

WTF DŨNG YOU LITTLE PIECE OF SHIT WHAT WRONG WITH YOU

Khách vãng lai đã xóa