Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
thu thủy phạm

Những câu hỏi liên quan
bnoug
Xem chi tiết
Vu Tuan Anh
Xem chi tiết
Horikita Suzune
Xem chi tiết
Hoàng Thu Huyền
Xem chi tiết
minh manh me
Xem chi tiết
Nguyễn Hoài Linh
5 tháng 8 2015 lúc 16:49

Ta có S=1/2^2+1/3^2+1/4^2+...+1/9^2 
           <1/2²+1/2*3+1/3*4+....+1/8*9 
           =1/2²+1/2-1/3+1/3-1/4+....+1/8-1/9 
           =1/4+1/2-1/9=23/36<32/36=8/9 (♪) 
Ta lại có S=1/2^2+1/3^2+1/4^2+...+1/9^2 
                >1/2²+1/3*4+1/4*5+....+1/9*10 
                =1/2²+1/3-1/4+1/4-1/5+........+1/9-1/10 
                =1/2²+1/3-1/10 
                =19/20>8/20=2/5 ( ♫) 
                Từ (♪)( ♫) cho ta đpcm

Lạnh Lùng
29 tháng 1 2016 lúc 21:15

Đpcm là j thế bạn

 

Tran Minh Hang
14 tháng 2 2016 lúc 8:21

Điều phải chứng minh

Phong Ngô
Xem chi tiết
Phạm Thanh	Thảo
22 tháng 11 2023 lúc 18:47

loading... 

Nguyễn Bạch Trường Giang
Xem chi tiết
NGUYÊN HẠO
1 tháng 4 2016 lúc 7:33

copy à

Nguyễn Thị Quỳnh Hương
1 tháng 4 2016 lúc 8:15

câu nào cũng trả lời.trốn học à

Nguyễn Bạch Trường Giang
1 tháng 4 2016 lúc 20:46

mình hỏi giúp bạn mình thôi

Hoàng Thị Trà My
Xem chi tiết
Mạnh Hùng Phan
14 tháng 4 2019 lúc 15:00

S<1/2^2 + 1/2.3 + 1/3.4 +...+ 1/8.9

S<1/4 + 1/2 - 1/3 + 1/3 - 1/4+...+1/8 - 1/9

S<1/4 + 1/2 - 1/9

S<23/36<8/9 (1)

Mặt khác: S>1/2^2 + 1/3.4 + ...+ 1/9*10

S>1/4 + 1/3 - 1/4 + ... + 1/9 - 1/10

S>1/4 + 1/3 - 1/10

S>29/60>2/5 (2)

Từ (1),(2)

=> 2/5<S<8/9

qqqqqqq
Xem chi tiết
Yen Nhi
8 tháng 4 2022 lúc 21:43

`Answer:`

 \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)

a) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)

\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)

\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)

b) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)

\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)

\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)

\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)

\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)

Khách vãng lai đã xóa