S<1/2^2 + 1/2.3 + 1/3.4 +...+ 1/8.9
S<1/4 + 1/2 - 1/3 + 1/3 - 1/4+...+1/8 - 1/9
S<1/4 + 1/2 - 1/9
S<23/36<8/9 (1)
Mặt khác: S>1/2^2 + 1/3.4 + ...+ 1/9*10
S>1/4 + 1/3 - 1/4 + ... + 1/9 - 1/10
S>1/4 + 1/3 - 1/10
S>29/60>2/5 (2)
Từ (1),(2)
=> 2/5<S<8/9
S<1/2^2 + 1/2.3 + 1/3.4 +...+ 1/8.9
S<1/4 + 1/2 - 1/3 + 1/3 - 1/4+...+1/8 - 1/9
S<1/4 + 1/2 - 1/9
S<23/36<8/9 (1)
Mặt khác: S>1/2^2 + 1/3.4 + ...+ 1/9*10
S>1/4 + 1/3 - 1/4 + ... + 1/9 - 1/10
S>1/4 + 1/3 - 1/10
S>29/60>2/5 (2)
Từ (1),(2)
=> 2/5<S<8/9
So sánh :
a) Chứng minh rằng : M = \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+.......+\dfrac{1}{100!} \)
Chứng minh rằng : M <1 .
b) Chứng minh rằng : N = \(\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+........+\dfrac{9}{1000!}\)
Chứng minh rằng : N < \(\dfrac{1}{9!}\)
1) A = 1 + 3 + 32 + 33 + ... + 3119
a, Tính A
b, Tìm x biết 2A + 1 = 27x
c, A : hết cho 5 và 13 ko?
2) So sánh
a, \(A=\dfrac{54.107-43}{53.107+54}vaB=\dfrac{135.269-133}{134.269+135}\)
b, \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)
Chứng minh rằng \(\dfrac{2}{5}< S< \dfrac{8}{9}\)
3) Tìm x,y thuộc Z biết \(\dfrac{x-3}{3}=\dfrac{7}{y+2}\)
4) Tìm n thuộc N để \(\dfrac{18n+3}{21n+7}\)rút gọn được .
5) Tìm số tự nhiên nhỏ nhất có 3 chữ số sao cho khi chia số đó cho 11 thì được số dư là 5; chia cho 13 dư 8, thương là 203.
Giúp mk nha !!!!!! Mình đang cần cực gấp !
Cho S = \(5+5^2+5^3+...+5^{2012}\)
chứng minh rằng S chia hết cho 65
mình làm thế này có đúng ko , mong mọi người nhận xét :
tổng S đều có số hạng 5 nên S chia hết cho 5 (1)
S= 5 + 5^2 + 5^3 + .. + 5^2012
= (5 + 5^3) + (5^2 + 5^4) + (5^5 + 5^7) + ... + ( 5^2010 + 5^2012 )
= 5 ( 1 + 5^2 ) + 5^2 (1+5^2) +....+ 5^2010 (1+5^2)
= 26(5+5^2+...+5^2010)
=> S chia hết cho 26
vì 26 = 2.13 mà (2;13)=1
=> S chia hết cho 13 (2)
từ (1) và (2)
=> S chia hết cho 5
S chia hết cho 13
mà 13.5 = 65 và (13;5)=1
=> S chia hết cho 65
Ai nhận xét sẽ có tick
Cho S=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2015^2}\). Chứng tỏ rằng \(\dfrac{1007}{2016}< S< \dfrac{2014}{2015}\)
Bài 5: Chứng minh rằng:
B= 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 + 1/82 <1.
Bài 1:Chứng tỏ rằng
a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}< 1\)
b)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
c)\(\frac{2}{5}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{8}{9}\)
d)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2:Cho M=\(\frac{1}{15}+\frac{1}{105}+\frac{1}{315}+..+\frac{1}{9177}\).So sánh với 12
Bài 3:Với giá trị nào của x \(\in\) Z các phân số sau có giá trị là 1 số nguyên
a)A=\(\frac{3}{x-1}\) b)B=\(\frac{x-2}{x+3}\) c)C=\(\frac{2x+1}{x-3}\) d)D=\(\frac{x^2-1}{x+1}\)
Bài 4:a) Chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n
a)\(\frac{n+1}{2n+3}\) b)\(\frac{2n+3}{4n+8}\)
Mình đang cần gấp lắm ,làm ơn
Cho A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.CT:\dfrac{8}{9}>A>\dfrac{2}{5}\)
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
Cho S=1+2+2³+2⁴+2⁵+2⁶+2⁷
Chứng minh rằng S chia hết cho 3
Giúp mình với
Mình đang cần gấp