93-×=5⁷:5⁵
A) 1×5+5×9+9×13+...89×93+93×97
B) 1×3+3×5+5×7+....95×97+97×99
C) 1×3+5×7+9×11+..93×95+97×99
a=3/1*5+3/5*9+....+3/89*93+3/93*97
S = 99 – 97 + 95 – 93 + 91 – 89 + ….+11 – 9 + 7 – 5 + 3 – 1S = 99 – 97 + 95 – 93 + 91 – 89 + ….+11 – 9 + 7 – 5 + 3 – 1
S=(99-97)+(95-93)+.......+(3-1)
S=2+2+......+2(25 số hạng)
S=2x25
S=50
Mình tính 1 dãy S thôi nhá -_-
Số số hạng của dãy : ( 99 - 1 ) : 2 + 1 = 50 số
Mỗi cặp có 2 số hạng => Có số cặp là : 50 : 2 = 25 cặp
Mỗi cặp có kết quả = 2 => Kết quả = 2 x 25 = 50
Tổng S có SSH là:
( 99-1):2+1=50(số hạng)
=>Tổng S có số cặp là:
50:2=25(cặp)
Ta có:
S=(99-97)+(95-93)+(91-89)+...+((11-9)+(7--5)+(3-1)
S=2+2+2+...+2
S=2.50
S=100
giải phương trình sau
\(\dfrac{2x+5}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}=\dfrac{2x+93}{7}+\dfrac{2x+94}{6}\dfrac{2x+95}{5}\)
Ta có : \(\dfrac{2x+5}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}=\dfrac{2x+93}{7}+\dfrac{2x+94}{6}+\dfrac{2x+95}{5}\)
\(\Leftrightarrow\dfrac{2x+5}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}-\dfrac{2x+93}{7}-\dfrac{2x+94}{6}-\dfrac{2x+95}{5}=0\)
\(\Leftrightarrow\dfrac{2x+5}{95}+1+\dfrac{2x+6}{94}+1+\dfrac{2x+7}{93}+1-\dfrac{2x+93}{7}-1-\dfrac{2x+94}{6}-1-\dfrac{2x+95}{5}-1=0\)
\(\Leftrightarrow\dfrac{2x+100}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}-\dfrac{2x+100}{7}-\dfrac{2x+100}{6}-\dfrac{2x+100}{5}=0\)
\(\Leftrightarrow\left(2x+100\right)\left(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}-\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{5}\right)=0\)
Thấy : \(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}-\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{5}\ne0\)
\(\Rightarrow2x+100=0\)
\(\Leftrightarrow x=-50\)
Vậy ...
Ta có: \(\dfrac{2x+5}{95}+\dfrac{2x+6}{94}+\dfrac{2x+7}{93}=\dfrac{2x+93}{7}+\dfrac{2x+94}{6}+\dfrac{2x+95}{5}\)
\(\Leftrightarrow\dfrac{2x+5}{95}+1+\dfrac{2x+6}{94}+1+\dfrac{2x+7}{93}+1=\dfrac{2x+93}{7}+1+\dfrac{2x+94}{6}+1+\dfrac{2x+95}{5}+1\)
\(\Leftrightarrow\dfrac{2x+100}{95}+\dfrac{2x+100}{94}+\dfrac{2x+100}{93}=\dfrac{2x+100}{7}+\dfrac{2x+100}{6}+\dfrac{2x+100}{5}\)
\(\Leftrightarrow\left(2x+100\right)\left(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}\right)=\left(2x+100\right)\left(\dfrac{1}{7}+\dfrac{1}{6}+\dfrac{1}{5}\right)\)
\(\Leftrightarrow\left(2x+100\right)\left(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}\right)-\left(2x+100\right)\left(\dfrac{1}{7}+\dfrac{1}{6}+\dfrac{1}{5}\right)=0\)
\(\Leftrightarrow\left(2x+100\right)\left(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}-\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{5}\right)=0\)
mà \(\dfrac{1}{95}+\dfrac{1}{94}+\dfrac{1}{93}-\dfrac{1}{7}-\dfrac{1}{6}-\dfrac{1}{5}\ne0\)
nên 2x+100=0
\(\Leftrightarrow2x=-100\)
hay x=-50
Vậy: S={-50}
cho A= 5 + 5*2 + 5*3 + 5*4 + ... + 5*2022. Chứng minh A chia hết cho 93
\(A=5+5^2+5^3+5^4+...+5^{2022}\\ =\left(5+5^2+5^3+5^4+5^5+5^6\right)+....+5^{2016}\left(5+5^2+5^3+5^4+5^5+5^6\right)\\ =19530+....+5^{2016}.19530\\ =210.93+...+5^{2016}.210.93\\ =93.210.\left(1+...+5^{2016}\right)⋮93\left(ĐPCM\right)\)
46 x 5 – 93 =?
A. 142
B. 152
C. 137
Viết các tổng sau thành tích:
a) 5 + 5 + 5 + 5 + 5 + 5 =
b) 4 + 4 + 12 + 8 =
c) 3 + 6 + 9 + 12 =
d) 65 + 93 + 35 + 7 =
a)5+5+5+5+5+5=6x5=30 b)4+4+12+8=4x7=28
c) 3+6+9+12=3x10=30 d)65 + 93 + 35 + 7 =5x40
1/1*3+1/3*5+1/5*7+......+1/91*93+1/x=5
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{91.93}+\frac{1}{x}=5\)
\(\Rightarrow\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{91.93}\right)+\frac{1}{x}=5\)
\(\Rightarrow\left[\frac{1}{2}\times\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{91.93}\right)\right]+\frac{1}{x}=5\)
\(\Rightarrow\left[\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{93}\right)\right]+\frac{1}{x}=5\)
\(\Rightarrow\left[\frac{1}{2}\times\left(1-\frac{1}{93}\right)\right]+\frac{1}{x}=5\)
\(\Rightarrow\left[\frac{1}{2}\times\frac{92}{93}\right]+\frac{1}{x}=5\)
\(\Rightarrow\frac{46}{93}+\frac{1}{x}=5\)
\(\Rightarrow\frac{1}{x}=5-\frac{46}{93}\)
\(\Rightarrow\frac{1}{x}=\frac{419}{93}\)
\(\Rightarrow x=1:\frac{419}{93}\)
\(\Rightarrow x=\frac{93}{419}\)
Vậy \(x=\frac{93}{419}\)
_Chúc bạn học tốt_
1/3×5 +1/5×7 +.......+1/2x+1×2x+3=15/93