Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn vân ly
Xem chi tiết
Nguyễn Đức Duy
Xem chi tiết
Đăng Nhật Hoàng
Xem chi tiết
nguyen thu hang
Xem chi tiết
Lê Thị Vân Anh
Xem chi tiết
Toàn Nguyễn Gia
13 tháng 3 2017 lúc 20:17

Violimpic đúng ko

thi huyện bao nhiêu điểm bạn

Hương Giang Lê
Xem chi tiết
Ngô Phương Quý
Xem chi tiết
Lê Tài Bảo Châu
14 tháng 2 2020 lúc 23:56

Áp dụng định lý Bezout ta được:

\(f\left(x\right)\)chia cho x+1 dư 4 \(\Rightarrow f\left(-1\right)=4\)

Vì bậc của đa thức chia là 3 nên \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)q\left(x\right)+ax^2+bx+c\)

\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+\left(ax^2+a\right)-a+bx+c\)

\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(=\left(x^2+1\right)\left[\left(x+1\right)q\left(x\right)+a\right]+bx+c-a\)

Vì \(f\left(-1\right)=4\)nên \(a-b+c=4\left(1\right)\)

Vì f(x) chia cho \(x^2+1\)dư 2x+3 nên

\(\hept{\begin{cases}b=2\\c-a=3\end{cases}\left(2\right)}\)

Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}a+c=6\\b=2\\c-a=3\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=2\\c=\frac{9}{2}\end{cases}}}\)

Vậy dư f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là \(\frac{3}{2}x^2+2x+\frac{1}{2}\)

Khách vãng lai đã xóa
Agami Raito
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 9 2019 lúc 20:07

Bạn vào đây xem thử

Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến

Omega Neo
Xem chi tiết