Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Trung Hiếu
Xem chi tiết
Nu Hoang Bang Gia
Xem chi tiết
Hoàng Lê Bảo Ngọc
28 tháng 5 2016 lúc 0:39

Ta có : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Tương tự : \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\) ; \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}=\frac{3}{2}\)

Vậy Min = 3/2 \(\Leftrightarrow a=b=c=1\)

No_pvp
12 tháng 7 2023 lúc 16:36

Mày nhìn cái chóa j

Anh Trâm
Xem chi tiết
Rồng Đom Đóm
22 tháng 3 2019 lúc 20:14

Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)

\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)

Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)

"="<=>a=b=c=3

Trần Đông Dun
Xem chi tiết
HUỲNH TÔ ÁI VÂN
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 10 2019 lúc 12:40

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b=\frac{2ac}{a+c}\)

\(P=\frac{a+b}{2a-b}+\frac{b+c}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{\frac{2ac}{a+c}+c}{2c-\frac{2ac}{a+c}}=\frac{a+3c}{2a}+\frac{3a+c}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\ge4\)

Dấu "=" xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Nguyen Thi Thu Hien
Xem chi tiết
Full Moon
Xem chi tiết
alibaba nguyễn
21 tháng 9 2018 lúc 14:35

\(T_{min}=\frac{2715}{8}\) tại \(a=b=\frac{1}{2}\)

alibaba nguyễn
22 tháng 9 2018 lúc 10:23

\(T=\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)

\(=\frac{19}{ab}+\frac{6}{a^2+b^2}+304\left(a^4+b^4+\frac{1}{16}+\frac{1}{16}\right)+48\left(a^4+\frac{1}{16}\right)+48\left(b^4+\frac{1}{16}\right)+1659\left(a^4+b^4\right)-44\)

\(\ge\frac{19}{ab}+\frac{6}{a^2+b^2}+304ab+24\left(a^2+b^2\right)+1659.\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}-44\)

\(=\left(\frac{19}{ab}+304ab\right)+\left(\frac{6}{a^2+b^2}+24\left(a^2+b^2\right)\right)+\frac{1307}{8}\)

\(\ge152+24+\frac{1307}{8}=\frac{2715}{8}\)

Nguyễn Minh Tuấn
Xem chi tiết
Nguyễn Minh Tuấn
11 tháng 3 2018 lúc 14:13

Ai giải được cho mười nghìn

Nguyễn Anh Quân
11 tháng 3 2018 lúc 14:31

Áp dụng bđt : (x+y)^2 < = 2.(x^2+y^2) thì :

(a+b)^2 < = 2.(a^2+b^2) = 2 . 2 = 4

=> a+b < = 2

Áp dụng bđt cosi ta có : 2a.b < = a^2+b^2 = 2

<=> a.b < = 1

Có : 

P = \(\sqrt{ab}\). ( \(\sqrt{a.\left(a+8\right)}+\sqrt{b.\left(b+8\right)}\))

   < = 1 . \(\frac{\sqrt{9a.\left(a+8\right)}+\sqrt{9b.\left(b+8\right)}}{3}\)

Áp dụng bđt : x.y < = (x+y)^2/4 thì :

P < = \(\frac{9a+a+8+9b+b+8}{2.3}\)

       = \(\frac{10.\left(a+b\right)+16}{6}\)

     < = \(\frac{10.2+16}{6}\)=  6

Dấu "=" xảy ra <=> a=b=1

Vậy ..............

Tk mk nha

Vũ Sơn Bách
Xem chi tiết