Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tôn Khánh Đoan
Xem chi tiết
lê thanh tùng
Xem chi tiết
Thuy Pro
Xem chi tiết
titanic
Xem chi tiết
Nguyễn phúc nguyên
4 tháng 11 2017 lúc 14:20

giải toán , trước đây mua 15 quyển vở phải trả 105000 đồng,hiện nay giá bán mỗi quyển vở giảm đi 2000 đồng, hỏi với 105000 đồng , hiện nay có thể mua được bao nhiêu quyển vở như thế

pham trung thanh
4 tháng 11 2017 lúc 14:42

\(\left(a+b\right)\left(a+2b\right)\left(a+3b\right)\left(a+4b\right)+b^4\)

\(=\left(a+b\right)\left(a+4b\right)\left(a+2b\right)\left(a+3b\right)+b^4\)

\(=\left(a^2+5ab+4b^2\right)\left(a^2+5ab+6b^2\right)+b^4\)

Đặt\(a^2+5ab+5b^2=t\)

Biểu thức đã cho bằng\(\left(t-b^2\right)\left(t+b^2\right)+b^4\)

                                     \(=t^2-b^4+b^4=t^2\)

\(a;b\in Z\Rightarrow t\in Z\Rightarrow t^2\)là số chính phương

Nguyen Khac Huy Nguyen
4 tháng 11 2017 lúc 15:14

tưởng các chú thế nào 

để anh thể hiện cho các chú xem

Erika Alexandra
Xem chi tiết
Nguyễn Thị Bích Khiêm
Xem chi tiết
phamphuckhoinguyen
Xem chi tiết
Toi da tro lai va te hai...
Xem chi tiết
T.Ps
10 tháng 6 2019 lúc 20:41

#)Giải :

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)

P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )

Song Hye Kyo
Xem chi tiết