tìm GTLN của M=\(\frac{\sqrt{x}+2}{x+32}\)(với x\(\ge0\))
Các bạn ơi giúp mk vs nha!!!
Cho biểu thức: M=\(\frac{\sqrt{x}}{x+\sqrt{x}}:\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a)rút gọn M
b)tìm gtln của M
giúp mk vs nhé mk cần gấp
ĐK: x > 0
a) Rút gọn M
M = \(\frac{\sqrt{x}}{x+\sqrt{x}}:\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
= \(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
= \(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left(\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
b) \(\frac{1}{M}=\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}+1\ge2+1=3\)
=> M \(\le\)1/3
=> GTLN của M =1/ 3 khi \(\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=1\) thỏa mãn
Vậy max M = 1/3 tại x = 1
bn giải thíchcách làm câu b hôk mk vs mk ko hiểu
Giải thích lại nhé!
( Bạn có thể nói rõ là bạn không hiểu ở dòng nào?)
\(M=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
=> \(\frac{1}{M}=\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\frac{1}{\sqrt{x}}=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)+1\)
mà \(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\) ( theo cô - si )
=> \(\frac{1}{M}=\sqrt{x}+\frac{1}{\sqrt{x}}+1\ge2+1=3\)
=> \(M\le\frac{1}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy GTLN của M là 1/3 đạt tại x = 1
TÌm x để \(\frac{2\sqrt{x}}{x-\sqrt{x}+1}\) nhận giá trị nguyên
Giúp mk vs các bạn ơi, khó quá !
CHO M=\(\frac{1}{\sqrt{X}}\)+\(\frac{\sqrt{X}}{\sqrt{X}+1}\)
N=\(\frac{\sqrt{X}}{X+\sqrt{X}}\)
a, RÚT GỌN S=M:N
b, TÌM GIÁ TRỊ NHỎ NHẤT CỦA S
CÁC BN ƠI GIÚP MK LÀM BÀI NÀY VS NHA!
MK CẢM ƠN CÁC BN TRƯỚC NHA!
Các b ơi giúp m vs
Câu 1: A = \(\frac{1}{2\sqrt{x}}+\frac{1}{2-\sqrt{x}}-\frac{2\sqrt{x}}{4-x}\left(x\ne4,x\ge0\right)\)0 và B = \(\left(\sqrt{2}+\sqrt{3}\right)\sqrt{2}-\sqrt{6}+\frac{\sqrt{333}}{\sqrt{111}}\)
a. Rút gọn A và B
b. Tìm x để A = B
a=căn (x)
A=[(4-a^2)(2-a)+2a(4-a^2)-4a^2(2-a)]/[(4-a^2)(2-a)2a]
A=(8-10a^2+4a+3a^3)/a(16-4a^2-8a+2a^3)
A=(a-2)^2(3a+2)/a(a+2)(a-2)^2*2
A=(3a+2)/a(a+2)*2
B=2+căn(3)
A=B suy ra
(3a+2)/a(a+2)*2=2+căn 3
<=>bấm máy tính ra nghiệm a=0.1539181357
=>x=a^2 =0.02341454985
tl đúng
Các bạn ơi giải giúp mik bài này nha:
Tìm x bằng phương pháp đặt ẩn phụ:
1, \(x^3+2=3\sqrt[3]{3x-2}\)
2,\(x+\sqrt{5-x^2}+x\sqrt{5-x^2}=5\)
3,\(\sqrt{1-x}+\sqrt{1+x}+\frac{x^2}{4}=2\)
Các bạn ơi làm giúp mình nha mình đang cần gấp lắm mấy bạn giúp mk nha . Mk sẽ tick 4 tick cho bạn nào nhanh nhất . Chân thành cảm ơn...
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
1/ \(x^3+2=3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ
\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)
Lấy trên - dưới ta được
\(x^3-a^3+3x-3a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt[3]{3x-2}\)
\(\Leftrightarrow x^3-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
2/ \(x+\sqrt{5-x^2}+x\sqrt{5-x^2}=5\)
Đặt \(\sqrt{5-x^2}=a\ge0\) thì ta có hệ
\(\hept{\begin{cases}x+a+ax=5\\a^2+x^2=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+a+ax=5\\\left(a+x\right)^2-2ax=5\end{cases}}\)
Tới đây thì đơn giản rồi. Đặt \(\hept{\begin{cases}a+x=S\\ax=P\end{cases}}\) giải tiếp sẽ ra
Cho \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)
a, Rút gọn C=\(\frac{1}{3-2\sqrt{x}}\) .
b, Tìm GTNN của C' với C' = \(\frac{1}{C}.\frac{1}{\sqrt{C}+1}\)
c, Tìm x\(\in Z\)để \(C'\in Z\)
Các bạn ơi giải giúp mình nha nếu các bạn ko bk làm câu b vs câu c thì làm câu c giúp mình nha mình đang cần câu c rất gấp nếu bạn nào chỉ bk giải câu c thì giải giúp mình nha còn nếu bk giải cả ba câu lun thì càng tốt. Ai nhanh mk tk cho . Chân thành cảm ơn các bạn .
c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)
Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)
\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)
Đế C' nguyên thì a + 1 là ước của 1
\(\Rightarrow a=0\)
\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)
\(\Rightarrow x=\frac{9}{4}\left(l\right)\)
Vậy không có x.
Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks
a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)
\(=\frac{1}{3-2\sqrt{x}}\)
Câu b, c tự làm nhé
Tìm GTLN của \(P=\frac{\sqrt{x}+4\sqrt{y}}{\sqrt{x}+2\sqrt{y}}\) với \(x\ge0;y\ge0;x\ne9y\)
cais này ko tìm gtln đc đâu chỉ tìm đ giá trị của P thui vì x = 2015 y rùi thay vào P sẽ thấy ngay
\(P=\frac{\sqrt{x}+4\sqrt{y}}{\sqrt{x}+2\sqrt{y}}=2-\frac{\sqrt{x}}{\sqrt{x}+2\sqrt{y}}\le2\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=0\\y\ne0\end{cases}}\)
Cho 2 biểu thức:
\(A=\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}\&P=\frac{2\sqrt{x}+1}{\sqrt{x}+1}.\)
Tìm GTLN của biểu thức \(M=\frac{A}{P}.\)
Giúp mk giải nha m.n! mk đang cần gấp lắm! THANKS!!!
- Tìm GTLN của \(R=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\left(x\ge0,x\ne1\right)\)
- Tìm GTNN của \(S=\dfrac{a+\sqrt{a}+1}{\sqrt{a}-1}\) với \(a>1\left(a\ge0\right)\)
- Tìm GTLN của \(Y=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\) \(\left(x>0,x\ne1\right)\)
Giup mk vs, lm đc tất thì tốt, còn ko 1 phần cx đc