Cho A =1+1/2+1/4+1/8+.............+1/2048+1/4096+1/8192
1 + 1/2 + 1/4 + 1/8 +...+ 1/4096 + 1/8192
Đặt tổng trên = A
\(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{4096}+\frac{1}{8192}\)
\(A.2=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}+\frac{1}{4096}\)
\(A.2-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}+\frac{1}{4096}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{4096}+\frac{1}{8192}\right)\)
\(A=2-\frac{1}{8192}=\frac{16383}{8192}\)
Đặt A = 1 + 1/2 + 1/4 + 1/8 + ... + 1/4096 + 1/8192
2A = 2 + 1 + 1/2 + 1/4 + ... + 1/2048 + 1/4096
2A - A = (2 + 1 + 1/2 + 1/4 + ... + 1/2048 + 1/4096) - (1 + 1/2 + 1/4 + 1/8 +... + 1/4096 + 1/8192)
A = 2 - 1/8192
A = 16383/8192
\(\text{Đ}\text{ặt}:A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{4096}+\frac{1}{8192}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}+\frac{1}{4096}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}+\frac{1}{4096}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{4096}+\frac{1}{8192}\right)\)
\(A=2-\frac{1}{8192}=\frac{16383}{8192}\)
A = 1 +2 + 4 + 8 +16 + ... + 4096 + 8192
A=1+2+2^2+...+2^13
=>2A=2+2^2+...+2^14
=>2A-A=2^14-1
=>A=2^14-1
1/2+1/4+1/8+...+1/1024+1/2048+1/4096
Đặt A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+................+\frac{1}{2048}+\frac{1}{4096}\)
2A=\(1+\frac{1}{2}+\frac{1}{4}+....................+\frac{1}{1024}+\frac{1}{2048}\)
2A-A=\(\left(1+\frac{1}{2}+\frac{1}{4}+................+\frac{1}{1024}+\frac{1}{2048}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...............+\frac{1}{2048}+\frac{1}{4096}\right)\)
A=\(1-\frac{1}{4096}\)
A=\(\frac{4095}{4096}\)
các bạn sai rồi bằng 2047/2048 đó chắc chắn 100% luôn mk thi rồi.
Đúng thì nhớ k nha các bạn hihi ^-^
1/2+1/4+1/8+1/16+..........................+1/2048+1/4096
bn tham khảo tại link này nhé :
https://olm.vn/hoi-dap/question/656309.html
https://olm.vn/hoi-dap/question/656309.html
1/2+1/4+1/8+....+1/1024+1/2048+1/4096=?
Từ biểu thức trên ta được
A=1/2+1/2^2+1/2^3+....+1/2^11+1/2^12
2A-A=2(1/2+1/2^2+1/2^3+....+1/2^11+1/2^12)-(1/2+1/2^2+1/2^3+....+1/2^11+1/2^12)
A=1+1/2^2+1/2^3+....+1/2^11-1/2-1/2^2-...-1/2^12
A=1/2-1/2^12
Ủng hộ cho mình nha bạn
\(A=\)\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}+\frac{1}{4096}\)
\(A=\)\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{12}}\)
\(2A=\)\(2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(2A=\)\(1+\frac{1}{2}+...+\frac{1}{2^{11}}\)
\(2A-A=\)\(\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(A=1-\frac{1}{2^{12}}\)
A=1+2+4+8 .................+4096+8192
giải theo cách toán lớp 4
Ta thấy:
1 + 2 = 3 ( Số liền trước 4)
1 + 2 + 4 = 7 ( Số liền trước 8)
1 + 2 + 4 + 8 = 15 ( Số liền trước 16)
⇒ 1 + 2 + 4 + 8 + 16 +……. + 4096 sẽ bằng số liền trước 8192
Mà số liền trước 8192 là 8191
⇒ A = 8191 + 8192 = 16383
Vậy A = 16383.
1/2+1/4+1/8+1/16+1/32+...+1/2048+1/4096
Đặt A=1/2+1/4+1/8+1/16+1/32+...+1/2048+1/4096
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{12}}\)
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{11}}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(A=1-\frac{1}{2^{12}}\)
Tính tổng : 1 + 2 + 4 + 8+ 16 + ...... + 2048 + 4096 + 8192
làm cả phép tính và lời giải giúp mình nhé
\(A=1+2+4+8+...+8192\)
\(2A=2+4+8+...+16384\)
\(2A-A=\left(2+4+...+16384\right)-\left(1+2+...+8192\right)\)
\(A=16384-1\)
\(A=16383\)
tính nhanh
A = 1/1+2 +1/1+2+3 +1/1+2+3+4+...+...+...+1/1+2+3+4+...+2009
A = 1+1/2+1/4+1/8+...+1/4096+1/8192