tìm A = 1/3+1/6+1/10+........+1/190
Tìm x biết : X x (1+1/3+1/6+1/10+1/15+...+1/190)=2013x19/10
Tính
A=1/3+1/6+1/10+....+1/190
:2 = 1/6 + 1/12 + 1/20 +...+ 1/380
= 1/(2x3) + 1/(3x4) + 1/(4x5) + ... + 1/(19x20)
= 1/2 - 1/3+1/3 - 1/4 +....+ 1/19- 1/20
= 1/2 - 1/20 = 9/20
Suy ra A = 9/20 x 2 = 9/10
TínhA=1/3+1/6+1/10+....+1/190
A:2 = 1/6 + 1/12 + 1/20 +...+ 1/380 = 1/(2x3) + 1/(3x4) + 1/(4x5) + ... + 1/(19x20) = 1/2 - 1/3+1/3 - 1/4 +....+ 1/19- 1/20 = 1/2 - 1/20 = 9/20 Suy ra A = 9/20 x 2 = 9/10
Tính tổng S=1+1/3+1/6+1/10+...+1/190
S=2(1/2+1/6+...+1/380)
=2(1-1/2+1/2-1/3+...+1/19-1/20)
=2*19/20=19/10
Tính 1\3+1\6+1\10+...+1\190
Ta viết lại dãy phân số như sau:
1/(0+1) + 1/(1+2) + 1/(1+2+3) + 1/(1+2+3+4) + ......+ 1/(1+2+3+ ....+19)
= 1/2x(0+1):2 + 2/2x(1+3) + 2/3x(1+3) + 2/4x(1+4) + ......+ 2/19x(1+19)
= 2/1.2 + 2/2.3 + 2/3.4 + .....+2/19.20 (thay dấu x bằng dấu chấm cho đỡ rối)
= 2.( 1-1/2 + 1/2 - 1/3 + 1/3 -1/4 + ....+ 1/19 -1/20)
= 2.( 1- 1/20)
= 2. 19/20
= 19/10
= 1 + 9/10
có thể để kết quả là 19/10 hay đổi ra hỗn số tùy ý.
tìm x biết \(|x+1|+|x+\frac{1}{3}|+|x+\frac{1}{6}|+|x+\frac{1}{10}|+...+|x+\frac{1}{190}|=20x\) =20x
Ta có \(\left|x+1\right|\ge0;\left|x+\frac{1}{3}\right|\ge0;...;\)\(\left|x+\frac{1}{190}\right|\ge0\) \(\forall x\)
=> \(\left|x+1\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{190}\right|\ge0\) \(\forall x\)
=> \(20x\ge0\Rightarrow x\ge0\)
Với \(x\ge0\) => \(x+1>0,x+\frac{1}{3}>0,x+\frac{1}{6}>0,...,x+\frac{1}{190}>0\)
=> \(\left|x+1\right|=x+1,\left|x+\frac{1}{3}\right|=x+\frac{1}{3},\left|x+\frac{1}{6}\right|=x+\frac{1}{6},...,\left|x+\frac{1}{190}\right|=x+\frac{1}{190}\)
=> \(x+1+x+\frac{1}{3}+x+\frac{1}{6}+...+x+\frac{1}{190}=20x\)
=> \(19x+\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{190}\right)=20x\)
=> \(x=\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{190}\right)\)
Gọi \(A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{190}\)
=> \(\frac{1}{2}A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{380}\)
=> \(\frac{1}{2}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
=> \(\frac{1}{2}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
=> \(\frac{1}{2}A=1-\frac{1}{20}\)
=> \(A=\frac{19}{10}\)
Thay vào ta có
=> \(x=-\frac{19}{10}\)
mk nhầm nha bạn \(x=\frac{19}{10}\)
68+1/3+1/6+1/10+1/15+...+1/190
Đặt \(M=68+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{190}\)
Đặt \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{190}\)
\(\Rightarrow A\times\frac{1}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{380}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{19\times20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}=\frac{19}{20}\)
\(\Rightarrow M=68+\frac{19}{20}=\frac{1379}{20}\)
Vậy \(68+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{190}=\frac{1379}{20}\)
Cho tớ sửa lại dòng thứ 2 từ dưới lên :
\(\Rightarrow A=\frac{19}{20}:\frac{1}{2}=\frac{19}{10}\)
\(\Rightarrow M=68+\frac{19}{10}=\frac{699}{10}\)
Vậy ...
X * ( 1 + 1/3 + 1/6 + 1/10 + 1/15 + ...... + 1/190 )
Tính A=1/3+1/6+1/10+1/15+....+1/171+1/190
Các bn giúp mk nhé
Cảm ơn
=2*(1/6+1/12+1/20+...+1/380)
=2*(1/2*3+1/3*4+1/4*5+...+1/19*20)
=2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/19-1/20)
=2*(1/2-1/20)
=2*(10/20-1/20)
=2*9/20
=18/20
=9/10
A/2=(1/3+1/6+1/10+1/15+...+1/171+1/190)/2
=1/6+1/12+1/20+1/30+...+1/342+1/380
=1/2.3+1/3.4+1/4.5+1/5.6+....+1/18.19+1/19.20
=1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 +....+ 1/18 - 1/19 + 1/19 - 1/20
=1/2 - 1/20 = 10/20 - 1/20 = 9/20
=> A = 9/20 .2 = 18/20=9/10