Tìm \(n\in N\) biết \(3n+4⋮2n+1\)
tìm n\(\in\) N biết
\(2n+1⋮n+2\)
\(n-4⋮n+3\)
\(2n^2+3n+1`⋮n+1\)
Gọi UC(2n + 1, n + 2) là d
ta có
2n + 1 và n + 2 chia hết cho d
ta có: n + 2 - 2n + 1 => 2n + 4 - 2n + 1 = 3
=> d = {-3; -1; 3; 1}
Tìm n thuộc N, biết: (2n+1; 3n+4) = 1
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
Tìm n∈Z biết
a) 2n+1⋮3-n
b)8n+1⋮2-n
c)3n+4⋮2-n
d)2n+1⋮2n+2
e)3-4n⋮2n+1
e: \(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-1;2;-3\right\}\)
\(\)Tìm n\(\in\)N biết:
a,4n + 23 \(⋮\) 2n + 3
b,3n + 11 \(⋮\) n -3
giúp mình với
a, 4n + 23 ⋮ 2n + 3
4n + 6 + 17 ⋮ 2n + 3
2.(2n + 3) + 17 ⋮ 2n + 3
17 ⋮ 2n + 3
2n + 3 \(\in\) Ư(17) = { 1; 17}
n \(\in\) {- 1; 7}
Vì n là số tự nhiên nên n = 7
b, 3n + 11 ⋮ n - 3
3n - 9 + 20 ⋮ n - 3
3.(n - 3) + 20 ⋮ n - 3
20 ⋮ n -3
n - 3 \(\in\) Ư(20) = {1; 2; 4; 5; 10; 20}
n \(\in\) {4; 5; 7; 8; 13; 23}
Tìm n \(\in\)N biết 3n + 1 chia hết cho 11 -2n
Ta có:3n+1 chia hết cho 11-2n
=>3n+1chia hết cho -(2n-11)
=>3n+1 chia hết cho 2n-11
=>2.(3n+1) chia hết cho 2n-11
=>6n+22 chia hết cho 2n-11
=>6n-33+33+22 chia hết cho 2n-11
=>3.(2n-11)+55 chia hết cho 2n-11
=>55 chia hết cho 2n-11
=>2n-11=Ư(55)=(1,5,11,55)
=>2n=(12,16,22,66)
=>n=(6,8,11,33)
Vậy n=6,8,11,33
->11-2n=2n+(-11) 3n+1 chia hết cho 2n+(-11) =>(3n+1)*2=6n+2 chia hết cho 2n+(-11) Mà 6n+(-33) chia hết cho 2n+(-11) (Vì bằng 2n+(-11) nhân với 3) =>6n+2 - (6n+(-33))=35 chia hết cho N=> N thuộc {1;5;7;35} Thử: N=1=>3n+1 ko chia hết cho 11-2n=>loại N=5=>3n+1 chia hết cho 11-2n=>chọn N=7=>3n+1 ko chia hết cho 11-2n=>loại N=35=>3n+1 ko chia hết cho 11-2n=> loại => N=5
cái bước 6n + 22 ....
22 ở mô ra đó bạn
Tìm n ∈ N để
a) \(\dfrac{2n^4-3n^2+n-2}{n-1}\) ∈ N (n≠1)
b) \(\dfrac{-3n^3+2n^2-n-2}{n+2}\) ∈ Z (n≠-2)
a: \(\Leftrightarrow2n^4-2n^3-n^3+n^2-n^2+n-2⋮n-1\)
\(\Leftrightarrow n-1\in\left\{-1;1;2\right\}\)
hay \(n\in\left\{0;2;3\right\}\)
tìm số nguyên n biết
a, 3n+25 chia hết cho n-4
b. 2n+1 chia hết cho 3n-5
a ) 3n + 25 ⋮ n - 4 <=> 3.( n - 4 ) + 37 ⋮ n - 4
Vì n - 4 ⋮ n - 4 . Để 3.( n - 4 ) + 37 ⋮ n - 4 thì 37 ⋮ n - 4 => n - 4 ∈ Ư ( 37 ) = { + 1 ; + 37 }
Ta có : n - 4 = 1 => n = 1 + 4 = 5 ( nhận )
n - 4 = - 1 => n = - 1 + 4 = 3 ( nhận )
n - 4 = 37 => n = 37 + 4 = 41 ( nhận )
n - 4 = - 37 => n = - 37 + 4 = - 33 ( nhận )
Vậy n ∈ { - 33 ; 3 ; 5 ; 41 }
Câu b tương tự
tìm các số nguyên n , biết: a) (3n-1)⋮ (n-2) b) (3n+1) ⋮ (2n-1)
Lời giải:
a.
$3n-1\vdots n-2$
$\Rightarrow 3(n-2)+5\vdots n-2$
$\Rightarrow 5\vdots n-2$
$\Rightarrow n-2\in\left\{1; -1;5;-5\right\}$
$\Rightarrow n\in\left\{3; 1; 7; -3\right\}$
b.
$3n+1\vdots 2n-1$
$\Rightarrow 2(3n+1)\vdots 2n-1$
$\Rightarrow 6n+2\vdots 2n-1$
$\Rightarrow 3(2n-1)+5\vdots 2n-1$
$\Rightarrow 5\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in\left\{1; 0; 3; -2\right\}$
a) (3n -1) chia hết (n-2)
⇒3(n-2)+5 chia hết (n-2)
⇒ 5 chia hết (n-2) vì 3(n-2) chia hết (n-2)
⇒(n-2) ϵ Ư(5)
Vậy n-2 =1 hoặc n-2 = -1 hoặc n-2 =5 hoặc n-2 = -5
Vậy n = 3 hoặc n=1 hoặc n=7 hoặc n= -3
b) (3n+1) chia hết (2n-1)
⇒(2n -1 +n +2) chia hết (2n-1)
⇒ (n+2) chia hết (2n-1)
⇒(2n +4) chia hết (2n-1)
⇒(2n -1 +5) chia hết (2n-1)
⇒ 5 chia hết (2n-1)
⇒(2n-1) ϵ Ư (5)
Vậy n = {-1; 0; 3; -2}