Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Đức Hùng
Xem chi tiết
Ninh Thế Quang Nhật
14 tháng 3 2017 lúc 16:44

= 1 . 1/2 + 1/2 . 1/3 + ... + 1/99 . 1/100

= 1 . 1/100

= 1/100

SAI thi mai len bao sai cho nao nha !!!!

Đức Phạm
14 tháng 3 2017 lúc 16:44

\(A=1-\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{100}{100}-\frac{1}{100}\)

\(A=\frac{99}{100}\)

Nghi Ngo
14 tháng 3 2017 lúc 16:45

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

     \(=1-\frac{1}{100}\)

      \(=\frac{99}{100}\)

Duong Thi Nhuong
Xem chi tiết
Nguyễn Việt Hoàng
Xem chi tiết
Hà Chí Dương
12 tháng 3 2017 lúc 8:12

5x-5x=0x=0

Nguyễn Dăng Chung
12 tháng 3 2017 lúc 8:12

5x-5x=0

chuc ban hoc tot 

Die Devil
12 tháng 3 2017 lúc 8:13

\(5x-5x\)

\(????????\)

\(\text{Bn mún hỏi dj v~~~~}\)

\(5x-5x=0\)

~~~~~~~~~~~

Lightning Farron
Xem chi tiết
Nguyễn Thị Anh
18 tháng 6 2016 lúc 21:35

đặt cái trên là A

=> A=\(\frac{2-1}{1.2}+\frac{3-2}{3.2}+..+\frac{100-99}{100.99}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{99}-\frac{1}{100}\)

=1-1/100=99/100

Ngân Hoàng Xuân
18 tháng 6 2016 lúc 21:36

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Curtis
18 tháng 6 2016 lúc 21:36

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

dinhkhachoang
Xem chi tiết
Đinh Khắc Duy
13 tháng 3 2017 lúc 12:08

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+........+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Chúc bạn học tốt!!!!!!

l҉o҉n҉g҉ d҉z҉
13 tháng 3 2017 lúc 12:01

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

dinhkhachoang
13 tháng 3 2017 lúc 12:01

A=\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

A=1-1/100

A=99/100

Bùi Anh Thịnh
Xem chi tiết
ruby little angel
15 tháng 9 2015 lúc 16:23

mk bít lm cách lớp 5, vừa học

Cần ko bn

nguyen hoang le thi
Xem chi tiết
Xem chi tiết
Phùng Minh Quân
3 tháng 3 2018 lúc 10:05

Ta có : 

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=\)\(1-\frac{1}{100}\)

\(=\)\(\frac{99}{100}\)

Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}=\frac{99}{100}\)

Chúc bạn học tốt ~

Huỳnh Phước Mạnh
3 tháng 3 2018 lúc 10:34

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

                                                              \(=1-\frac{1}{100}=\frac{99}{100}\)

ĐÚNG 100%

                                                               

❤Trang_Trang❤💋
3 tháng 3 2018 lúc 12:05

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Khuyến ZSM
Xem chi tiết
%$H*&
14 tháng 4 2019 lúc 20:12

\(NGU=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{100}{100}-\frac{1}{100}\)

\(=\frac{99}{100}\)

nguyen tiendung
14 tháng 4 2019 lúc 20:14

=1/1-1/2+1/3-1/4+..........+1/99-1/100

=1/1-1/100

=99/100

Khánh Ngọc
14 tháng 4 2019 lúc 20:14

\(N.G.U=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Vậy \(N.G.U=\frac{99}{100}~:v\)