đặt cái trên là A
=> A=\(\frac{2-1}{1.2}+\frac{3-2}{3.2}+..+\frac{100-99}{100.99}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{99}-\frac{1}{100}\)
=1-1/100=99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
= 1.(\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\))
= 1.(\(\frac{1}{1}-\frac{1}{100}\))
= 1.\(\frac{99}{100}\)
= \(\frac{99}{100}\)
Chúc bạn học tốt
à mấy bn cho mk xin dấu hiệu chia hết 7