Đặt A=(1-2/2*3)*(1-2/3*4)*(1-2*/4*5)*...*(1-2/99*100)
A=\(\frac{1\cdot4}{2\cdot3}\)*\(\frac{2\cdot5}{3\cdot4}\)*\(\frac{3\cdot6}{4\cdot5}\)*...*\(\frac{98\cdot101}{99\cdot100}\)
A=\(\frac{1\cdot101}{3\cdot99}\)
A=\(\frac{101}{297}\)
Đặt A=(1-2/2*3)*(1-2/3*4)*(1-2*/4*5)*...*(1-2/99*100)
A=\(\frac{1\cdot4}{2\cdot3}\)*\(\frac{2\cdot5}{3\cdot4}\)*\(\frac{3\cdot6}{4\cdot5}\)*...*\(\frac{98\cdot101}{99\cdot100}\)
A=\(\frac{1\cdot101}{3\cdot99}\)
A=\(\frac{101}{297}\)
Tính:\(\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)...\left(1-\frac{2}{99.100}\right)\)
CMR: \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
Tính giá trị của biểu thức:
a) A= (153 + 5. 152 - 53) : ( 183 + 6. 182 - 63)
b) \(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\)
c) \(C=\frac{-1}{1.2}.\frac{-2^2}{2.3}.\frac{-3^2}{3.4}...\frac{-99^2}{99.100}.\frac{-100^2}{100.101}\)
\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
Cho A = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\). CMR: \(\frac{7}{12}< A< \frac{5}{6}\)
Rút gọn:
\(\frac{1.4+2.5+3.6+4.7+...+99.102}{1.2+2.3+3.4+4.5+...+99.100}\)
Tính:
a) S1=\(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{99.100}\)b) S2=\(-\frac{4}{1.5}-\frac{4}{5.9}-...-\frac{4}{\left(n-4\right)n}\)tính \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
1.Chứng minh rằng: \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^3.4^2}+...+\frac{19}{9^2.10^2}< 1\)
2.Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Làm nhanh giúp mình nhé mọi người !!!