cho 2a=3b=4c Tìm giá trị của biểu thức A=\(\dfrac{a-b+c}{a+2b-c}\)
B1:Cho biểu thức A = ( -a + b - c) - ( -a -b -c)
a ;Rút gọn A b ;Tình giá trị biểu thức A khi a = 1 ; b= - 1 ; c= - 2
B2 Cho biểu thức A = ( -m +n - p) - ( -m -n -p)
a ;Rút gọn A b ;Tình giá trị biểu thức A khi a = 1 ; b= - 1 ; c= - 2
B3; Cho biểu thức A = (-2a + 3b - 4c) - (-2a - 3b - 4c)
a ;Rút gọn A b ;Tình giá trị biểu thức A khi a = 2012 ; b= - 1 ; c= - 2013
bài 1 : a +b , rút gọn và tính
(-a+b-c)-(a-b-c)= -a+b -c-a+b+c= -2a+2b= -2.1+2.-1=-2+-2 = -4
cho biểu thức C=\(\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)
a, Tìm giá trị của x để giá trị của biểu thức C được xác định
b, Tìm x để C=0
c, Tìm giá trị nguyên của x để C nhận giá trị dương
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương
Phân tích đa thức thành nhân tử
(x^2-2x+3)(x^2-2x+5)-8
x^2-2x-5+2 nhân căn 5
Cho a+b+c=1.Tìm giá trị của biểu thức
B=a-b trên b+1+2c + 3b+4c trên c-a+2 -c trên 3-2a-b
tìm các giá trị của a sao cho biểu thức sau có giá trị bằng 2
\(\dfrac{2a^2-3a-2}{a^2-4}\)
\(\dfrac{2a^2-3a-2}{a^2-4}=2\)
\(\Leftrightarrow2a^2-3a-2-2a^2+8=0\)
\(\Leftrightarrow-3a+6=0\)
\(\Leftrightarrow a=2\)
ĐK: `a \ne \pm 2`
`(2a^2-3a-2)/(a^2-4)=2`
`<=>2a^2-3a-2=2(a^2-4)`
`<=>2a^2-3a-2=2a^2-8`
`<=>-3a-2=-8`
`<=>-3a=-6`
`<=>a=2` (Loại)
Vậy không có `a` thỏa mãn.
Sao lại <=> được nhỉ -.-
\(\dfrac{2a^2-3a-2}{a^2-4}=2\left(ĐK:a\ne\pm2\right)\)
\(\Rightarrow2a^2-3a-2=2a^2-8\)
\(\Leftrightarrow-3a=-6\Leftrightarrow a=2\left(ktm\right)\)
Vậy không có giá trị của a thỏa mãn
Cho biểu thức: A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết |x|=\(\dfrac{1}{2}\)
c, Tìm giá trị của x để A<0
Cho biểu thức: A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết |x|=\(\dfrac{1}{2}\)
c, Tìm giá trị của x để A<0
a, ĐKXĐ: x≠±2
A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)
A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)
b, |x|=\(\dfrac{1}{2}\)
TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)
TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)
Thay \(\dfrac{1}{2}\), \(\dfrac{-1}{2}\) vào A ta có:
\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)
\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)
c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)2 < 0
⇔ {x-2>0 ⇔ {x>2
[ [
{x+2<0 {x<2
⇔ {x-2<0 ⇔ {x<2
[ [
{x+2>0 {x>2
⇔ x<2
Vậy x<2 (trừ -2)
Cho biểu thức: A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết |x|=\(\dfrac{1}{2}\)
c, Tìm giá trị của x để A<0
Cho biểu thức: B=\(\left[\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right].\dfrac{4x^2-4}{5}\)
a, Tìm điều kiện của x để giá trị của biểu thức được xác định
b, Chứng minh rằng: Khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị
a, ĐKXĐ: \(x\ne1;x\ne-1\)
b, Với \(x\ne1;x\ne-1\)
\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)
=> ĐPCM
Cho hai biểu thức: và với
a) Tính giá trị của B biết x = -1
b) Rút gọn biểu thức A
c) Đặt . Tìm x Z sao cho P nhận giá trị nguyên