Tim UCLN(2n+1,n+1)
tim ucln cua n.[n+1]:2 va 2n+1 voi n thuoc n*
1.tim STN n sao cho 2n+3 chia het cho 2n-1
2.tim STN a va b biet a.b=48 va UCLN(a, b)=2
Tìm n thuộc Z để (n^2-n-1) chia hết cho (n-1)
Tim UCLN ( 2n+1 ; 3n+1)
a) n2 - n - 1 =n.(n - 1) - 1 chia hết cho (n - 1)
=> n.(n - 1) chia hết cho (n - 1) và 1 chia hết cho (n - 1) hay n - 1 \(\in\)Ư(1) = 1
=> n = 2
b) Đặt ƯCLN ( 2n + 1 ; 3n + 1) = d
=> 6n + 3 chia hết cho d và 6n + 2 chia hết cho d
=> 6n + 3 - 6n - 2 = 1
=> 1 chia hết cho d hay d \(\in\)Ư(1) = 1
Vậy: ƯCLN ( 2n + 1 ; 3n + 1) = 1
cho n thuoc N tim UCLN cua
a) 2n+1 va 3n+1
b)20n+1va 15n+2
a) Đặt UCLN(2n + 1 ; 3n + 1) = d
2n + 1 chia hết cho d => 6n + 3 chia hết cho d
3n + 1 chia hết cho d => 6n + 2 chia hết cho d
UCLN(6n + 3 ; 6n + 2 ) = 1
Do đó d = 1; Vậy UCLN(2n + 1 ; 3n + 1) = 1
giai giup minh nhe
bai 1 a )tim ucln(6n+3,6n+9)
b)tim ucln (2n-1;9n+4)
bai2 tim a;b thuoc n biet
bcnn(a;b)=240
ucln(a;b)=16
bai 3 tim so chia va thuong cua 1 phep chia biet so bi chia la 145 du 12 thuong # 1
Tim UCLN cua 2n - 1 va 9n + 4 (n thuoc N*)
Ai giai dau tien mk tick ( phai dung nhe )
tim UCLN cua 2n - 1 va 9n + 4 (n thuoc N*)
gọi UCLN (2n-1,9n+4)=d(d thuộc N*)
ta có 2n-1 chia hết cho d=>(-9)(2n-1)=-18n+9 chia hết cho d
9n+4 chai hết cho d=>2(9n+4)=18n+8 chia hết cho d
=>(18n+9)-(18n+8) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(2n-1,9n+4)=1
gọi UCLN (2n-1,9n+4)=d(d thuộc N*)
ta có 2n-1 chia hết cho d=>(-9)(2n-1)=-18n+9 chia hết cho d
9n+4 chai hết cho d=>2(9n+4)=18n+8 chia hết cho d
=>(18n+9)-(18n+8) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(2n-1,9n+4)=1
tim UCLN cua 2n - 1 va 9n + 4 (n thuoc N*)
gọi UCLN (2n-1,9n+4)=d(d thuộc N*)
ta có 2n-1 chia hết cho d=>(-9)(2n-1)=-18n+9 chia hết cho d
9n+4 chai hết cho d=>2(9n+4)=18n+8 chia hết cho d
=>(18n+9)-(18n+8) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(2n-1,9n+4)=1
tim UCLN(2n cong1,3n cong 1
Tim UCLN( 9n+4; 2n-1)
Gọi d thuộc ƯC (2n-1,9n+4)suy ra 2(9n+4)-9(2n-1) : d suyra 17 :d suyra d thuộc {1,17}
Tim UCLN(2n+2,2n) voi n thuoc N*