cho tam giac abc can tai a ke ah vuong goc bc a chung minh ha =hc va ah la tia phan giac cua bac
cho tam giac abc vuong tai a co db la duong phan giac ke ae vuong goc voi bd [e thuoc bd ] ae cat bc o k hay chung minh dieu nay nhe +chung minh tam giac abk can +chung minh dk vuong goc voi bc +ke ah vuong goc voi bc chung minh ak la tia phan giac cua goc hac +goi i la giao diem cua ah va bd chung minh ik song song voi ac
bài này mình làm rồi nhé bạn.Để mình chỉ cho bạn nha
1)Xét tam giác BAE và tam giác BKE:
BEA = BEK = 90 độ
BE chung
ABE = KBE ( BE là phân giác của B )
=> Tam giác BAE = Tam giác BKE( g-c-g)
=> BA = BK( 2 cạnh tương ứng)
=> Tam giác ABK cân ở B
2)Xét tam giác ABD và tam giác KBD:
BA = BK ( cm trên)
ABD = KBD ( BD là phân giác của B)
BD chung
=> Tam giác ABD = Tam giác KBD ( c-g-c)
=> BAD = BKD = 90 độ
=>KDB = KDC = 90 độ
=> KD vuông góc với BC
3) Ta thấy : BAD + ADB + DBA = 180 độ
=> ADB + DBA = 90 độ (1)
Mà AIE = BIH ( 2 góc đối đỉnh)
Mà BIH + IHB +HBI = 180 độ
=> BIH + HBI = 90 độ (2)
Mà DBA = HBI ( BD là phân giác của B ) (3)
Từ (1),(2) và (3) => AID = ADI (4)
=> Tam giác DAI cân ở A
=> AI = AD
Xét tam giác vuông IAE (vuông ở E) và tam giác vuông DAE( vuông ở E)
AI = AD
AE chung
=> tam giác IAE = tam giác DAE(ch-cgv)
=> DAE = IAE ( 2 góc tương ứng)
=> AE là phân giác IAD
=> AK là phân giác HAC
4) Xét tam giác IAE và tam giác KAE:
AEI = KEI
EI chung
AE=EK(2 cạnh tương ứng)
=> Tam giác IAE = Tam giác KAE
=> AIE = KIE ( 2 góc tương ứng) (5)
Từ (4) và (5) =>KIE = EAD
Mà 2 góc này ở vị trí so le trong
=> IK song song với AC
Mình làm bài này là để bạn hiểu nha ko hiểu thì nói mình
(Dấu gạch ngang trên đầu thay cho dấu góc)
HUHUHUHU....... Lúc làm bài kiểm tra chưa nghĩ ra,h mới nghĩ ra
cho tam giac ABC can tai A (AB>BC) va BD vuong goc voi AC tai B CE vuong goc voi AB tai E a.tam giac DABtam giac ADE can b. goi H la giao diem cua BD va CE. chung minh AH la tia phan giac BAC c.chung minh AH>CH
Cho tam giac ABC can tai A
Ke AH vuong goc vs BC
- Chung minh AH la tia phan giac cua goc A
Xét tam giác vuông \(AHB\)và tam giác vuông \(AHC\)có
\(AB=AC\left(gt\right)\)
\(\widehat{B}=\widehat{C}\left(gt\right)\)
=> Tam giác vuông \(AHB\)= tam giác vuông \(AHC\)( cạnh huyền - góc nhọn )
=> \(\widehat{A_1}=\widehat{A_2}\)( hai góc tương ứng )
=> AM là tia phân giác của \(\widehat{A}\)( đpcm )
Cho tam giac ABC can tai A ke AH vung goc voi BC (H thuoc BC )
a, Chung minh AH la tia phan giac cua goc BAC
b, Ke HD vuong goc voi AB ( D thuoc AB) , HE vuong goc voi AC ( E thuoc AC). Chung minh tam giac HDE can
c, Neu cho AB = 29 cm , AH = 20 cm .Tinh do dai BC
d,Chung minh BC//DE
e, Neu cho goc BAC =120 do thi tam giac HDE tro thanh tam giac gi ? Vi sao
cho tam giac ABC vuong tai A. Ke AH vuong goc voiBC, H thuoc BC. Tia phan giac cua goc HAC cat BC . Chung minh
a, tam giac ABD la tam giac can o A
b,Tu D ke DK vuong goc voi AC / K thuoc AC/ Chung minh
A la phan giac cua HDC
Cho tam giac ABC vuong can voi day BC. Goi M va N lan luot la trung diem cua AB va AC. Ke NH vuong goc voi CM tai H, HE vuong goc voi AB tai E, AK vuong goc voi HM tai K.
a, Chung minh rang: AK = HC va H la trung diem cua KC
b, Cho AH = 4 cm. Tinh dien tich tam giac ABC
c, Chung minh rang HM la phan giac goc EHB
Bạn tự vẽ hình nhé
Xét các tam giác vuông AKM và tam giác vuông CHN có
AM=NC ( bằng 1 nửa đoạn AB=AC)
Góc MAK= góc NCH ( cùng phụ với AMC)
=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)
=> AK=HC ( 2 cạnh tương ứng)
Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)
Có N là trung điểm của cạnh AC (2)
Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\)
=>H là trung điểm của KC
b) Theo câu a, ta có AK=HC và KH=HC
=>AK=HC
=> AK2+KH2=AH2
=>2.AK2=16
=>AK2=8
=>AK=KH=\(\sqrt{8}\)
=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)
Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2
=>AC2=8+32=40
=>\(AC=AB=\sqrt{40}\)
Diện tích tam giác ABC là
\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2
Câu c hình như sai đề
Theo cau a ta co:
goc BAK = gocACH va AK = CH
Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )
Suy ra goc DKA = goc AHC
Ma tam giac AKH vuong tai A
Suy ra goc AHK = 45 do
Suy ra goc AHC = 135 do ( ke bu )
Hay goc AKB = 135 do
Ta co goc AKH = 90 do Suy ra goc BKH = 135 do
Hay AKB = 135 do
Ta lai co goc AKH = 90 do Suy ra BKH = 35 do
Suy ra tam giac BKA = tam gic BKM
goc BHK = goc BAK
Do HE || AC ( cung vuong goc AB )
Suy ra goc EHM = goc ACH Va goc BAK = goc ACH
Suy ra BHK = MHE
HM la tia phan giac goc EHB
Cho tam giac ABC vuonA , co AH la duog tai ng cao (H thuoc BC) va AM la tia phan giac cua goc HAC (M thuoc BC) . Ke MK vuong goc voi AC tai K . a,Chung minh rang AH = AK,BA = BM. b,Goi I la giao diem cua duong thang MK va duong thang AH . Chung minh rang AM vuong goc CI va KH song song C
a, Xét \(\Delta AHM\) và \(\Delta AKM\) có:
\(\widehat{AHM}=\widehat{AKM}=90^o\)
AM cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (vì AM là tia phân giác của \(\widehat{HAK}\))
\(\Rightarrow\Delta AHM=\Delta AKM\) (cạnh huyền - góc nhọn)
`=> AH = AK` (2 cạnh tương ứng) (1)
Ta có: \(\widehat{AMK}+\widehat{KAM}=90^o\) (vì \(\Delta AKM\) vuông tại K)
\(\widehat{KAM}+\widehat{BAM}=90^o\)
\(\Rightarrow\widehat{AMK}=\widehat{BAM}\)
Mà \(\widehat{AMK}=\widehat{AMB}\) (vì \(\Delta AHM=\Delta AKM\))
\(\Rightarrow\widehat{BAM}=\widehat{AMB}\)
\(\Rightarrow\Delta ABM\) cân tại B \(\Rightarrow AB=BM\) (2)
Từ (1), (2) ta có đpcm
b, Xét \(\Delta HIM\) và \(\Delta CKM\) có:
\(\widehat{HMI}=\widehat{CMK}\) (2 góc đối đỉnh)
HM = KM (vì \(\Delta AHM=\Delta AKM\))
\(\widehat{IHM}=\widehat{CKM}\left(=90^o\right)\)
\(\Rightarrow\Delta HIM=\Delta KCM\left(g.c.g\right)\)
`=> HI = CK` (2 cạnh tương ứng)
Mà AH = AK (cmt)
`=> AH + HI = AK + CK`
`=> AI = AC`
\(\Rightarrow\Delta ACI\) cân tại A
AM là đường phân giác của \(\Delta ACI\) cân tại A
`=> AM` cũng là đường cao
\(\Rightarrow AM\perp CI\) (3)
Vì AH = AK nên \(\Delta AHK\) cân tại A
\(\Rightarrow\widehat{AHK}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Delta ACI\) cân tại A \(\Rightarrow\widehat{AIC}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Rightarrow\widehat{AHK}=\widehat{AIC}\)
Mà 2 góc này ở vị trí đồng vị
`=>` HK // CI (4)
Từ (3), (4) ta có đpcm
cho tam giac abc can tai a(goc a nhon, ab>bc). goi h la trung diem bc
A)chung minh tam giac ahb=tam giac ahc va ah vuong goc voi bc tai h
B)goi m la trung diem cua AB. Qua A ke duong thang song song voi BC, cat tia HM tai D. Gia su AB=20cm,AD=12cm. Chung minh AD=BH. tinh do dai doan AH.
C)tia phan giac cua goc BAD cat tia CB tai N. Ke NK vuong goc voi AD tai K, NQ vuong goc voi AB tai Q. Chung minh AQ=AK va goc ANQ=45do + 1/4gocBAC
D)CD cat AB tai S. Chung minh BC < 3.AS
cho tam gia ABC can tai A, AH la tia phan giac cua gocA (H thuocBC)
a, chung minh hb=hc
b,ke hd vuong goc voi ab ke eh vuong goc voi ac chung minh tam giac hde can
a)
ta có: tam giác ABC cân tại A suy ra AB=AC; B=C
xét tam giác ABH và tam giác ACH có:
AB=AC(gt)
AH(chung)
BAH=CAH(gt)
suy ra tam giác ABH= tam giac ACH(c.g.c)
suy ra BH=CH(đfcm)
b)
xét 2 tam giác vuông ADH và AEH có
AH(chung)
DAH=EAH(gt)
suy ra tam giác DAH=EAH(CH-GN)
suy ra HD=HE suy ra tam giác HDE cân tại H(đfcm)