Tính1/ 1.2.3+ 1/ 2.3.4+ ....... +1/2004.2005.2006
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2004.2005.2006}\)
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2004.2005.2006}\)
\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+2.\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+...+2.\left(\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)
\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)
\(=2.\left(\dfrac{1}{1.2}-\dfrac{1}{2005.2006}\right)\)
\(=1-\dfrac{2}{2005.2006}\)
\(=\dfrac{2011014}{2011015}\).
Ta có:
\(M=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2004.2005.2006}\)
\(M=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{2004.2005.2006}\right)\)
\(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2004.2005}-\dfrac{1}{2005.2006}\right)\)
\(M=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2005.2006}\right)\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2004.2005.2006}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2004.2005.2006}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2004.2005}-\frac{1}{2005.2006}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2005.2006}\right)\)
\(=\frac{1}{4}-\frac{1}{2.2005.2006}\)
\(\frac{2}{1.2.3}\) + \(\frac{2}{2.3.4}\) + ..... + \(\frac{2}{2004.2005.2006}\)
\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2004.2005.2006}\)
\(=\frac{2}{1.2}-\frac{2}{2.3}+\frac{2}{2.3}-\frac{2}{3.4}+...+\frac{2}{2004.2005}-\frac{2}{2005.2006}\)
\(=\frac{2}{1.2}-\frac{2}{2005.2006}\)
\(=1-\frac{1}{2011015}\)
\(=\frac{2011015}{2011015}-\frac{1}{2011015}\)
\(=\frac{2011014}{2011015}\)
Cbht
P = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/n(n+1)(n+2)
S = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +...+ 1/48.49.50 .
tao có:
2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)
2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)
2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)
2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)
2p=1/1.2-1/(n+1).(n+2)
2p=(n+!).(n+2)-2/(2n+2).(n+2)
suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)
2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50
2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49
2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50
2s=1/1.2-1/49.50
'2s=1/2-1/2450
2s=1225/2450-1/2450
2s=1224/2450
s=612/1225
\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1
\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)
S cx tinh giong v
1/1.2.3 + 1/2.3.4 + ....................................+1/101.102.103 =?
Lời giải:
Gọi tổng trên là A
$2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{101.102.103}$
$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{103-101}{101.102.103}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{101.102}-\frac{1}{102.103}$
$=\frac{1}{1.2}-\frac{1}{102.103}=\frac{2626}{5253}$
$\Rightarrow A=\frac{1313}{5253}$
B=1/1.2.3+1/2.3.4+...+1/8.9.10
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+...+\dfrac{1}{8.9.10}\)
\(B=2.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(B=2.\left(1-\dfrac{1}{10}\right)\)
\(B=2.\dfrac{9}{10}\)
\(B=\dfrac{9}{5}\)
anh ơi , đại học rồi mà ko giải đc bài này ạ?
Tìm x:\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}-3x=\left(1.2.3+2.3.4+...+98.99.100\right).\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\right)\)
Câu5: Tính : 1.2.3+2.3.4+3.4.5+...................+28.29.30.Từ đó cho biết kết quả của tổng : 1.2.3+2.3.4+3.4.5+............................+(n-1).n.(n+1) theo n
(với n là số tự nhiên khác 0 )
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30
4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)
4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30
4A = 28.29.30.31 - 0.1.2.3
4A = 28.29.30.31
\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)
Theo cách tính trên ta dễ dàng tính được:
1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
1) tính :
a) 2/ 1.2.3 + 2/ 2.3.4 + ...+ 2/ 98.99.100
b) 4/ 2.4.6 + 4/ 4.6.8 + ...+ 4/ 50.52.54
c) 8/ 1.3.5 + 8/ 3.5.7 + ...+ 8/ 18.19.20
d) 1/ 1.2.3 + 1/ 2.3.4 + ... + 1/ 18.19.20