de thi violympic toan tieng anh lop 4 vong 9
Calculate:
FIND THE GREATEST NATURAL m SUCH THAT :
Tìm K,biết
Find K such that:
= 1 nha
mik chuc ban hoc gioi ha
Six students had an orange eating contest. The graph shows the number of oranges eaten by each student. Mary ate the fewest oranges and Jack ate the greatest. How many more oranges did Jack eat than Mary?
Vì Jack ăn được nhiều nhất nên nhìn vào biểu đồ ta thấy Jack ăn được 6 quả cam
Còn Mary ăn được ít nhất nên ăn được 1 quả
Vậy Jack ăn nhiều hơn Mary số quả cam là: 6 - 1 = 5 (quả cam)
ĐS:
Jack ate than Mary 5 oranges
Mong các ad không trừ điểm mình
If x - y - z = 0 and x + 2y - 10z = 0, z ≠ 0 then the value of is ............
\(\left\{\begin{matrix}x-y-z=0\left(1\right)\\x+2y-10z=0\left(2\right)\end{matrix}\right.\)
Lấy (1) - (2), ta có:
\(-3y+9z=0\Leftrightarrow-3\left(y-z\right)=0\)
\(\Rightarrow y-z=0\)
\(\Rightarrow y=-z\)
Thay y=-z vào (1), ta có:
\(x-\left(-z\right)-z=0\Rightarrow x=0\)
Thay x=0 vào B, ta được B=0 (tử bằng 0)
\(\left\{\begin{matrix}x-y-z=0\left(1\right)\\x+2y-10z=0\left(2\right)\end{matrix}\right.\)
Lấy (1) - (2), ta được:
-3y+9z=0
-3(y-z)=0
=> y-z=0=>y=z
Thay y=z vào (1), ta có:
x-z-z=0<=>x-2z=0=>x=2z
Thay, x=2z,y=z vào B, ta có:
\(B=\frac{2x^2+4xy}{y^2+z^2}\)
\(B=\frac{2.\left(2z\right)^2+4.2z.z}{z^2+z^2}=\frac{16z^2}{2z^2}=8\)
\(\begin{cases} x-y-z=0 (1)\\ x+2y-10z=0(2) \end{cases}\)
Lấy (1)-(2) ta được:-3y+9z=0
\(\Leftrightarrow \) y=3z thay vào (1) được : x=4z
Khi đó: B=8
If x - y - z = 0 and x + 2y - 10z = 0, z ≠ 0 then the value of is ............
\(\left\{{}\begin{matrix}x-y-z=0\\x+2y-10z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=3z\\x=y+z=4z\\x+2y=10z\end{matrix}\right.\)
\(B=\dfrac{2x^2+4xy}{y^2+z^2}=\dfrac{2x\left(x+2y\right)}{9z^2+z^2}=\dfrac{2.4z.10z}{10.z^2}=8\)
Given the rectangle ABCD and the triangle BEC. Find the value of x such that the ratio of the area of the rectangle to the area of the triangle BEC is 7:3.
Answer: x = ....... cm.
ta co ti so:
\(\frac{S_{abcd}}{S_{bec}}=\frac{7}{3}\Leftrightarrow\frac{ab.bc}{\frac{x.bc}{2}}=\frac{7}{3}\Leftrightarrow\frac{2ab}{x}=\frac{7}{3}\)
\(\Leftrightarrow\)\(\Leftrightarrow\frac{2.7}{x}=\frac{7}{3}\Leftrightarrow\frac{2}{x}=\frac{1}{3}\Leftrightarrow x=6\)
A rectangle has a length of 60cm and a width of 30cm. It is cut into 2 indentical squares, 2 identical rectangles and a shaded small square. Find the area of the shaded square.
Find the area of the shaded square.