Tính C=\(\frac{75.\left(4^{1993}+4^{1992}+...+4^2+4+1\right)+25}{4^{1994}}\)
Tính C=\(\dfrac{75.\left(4^{1993}+4^{1992}+...+4^2+4+1\right)+25}{4^{1994}}\)
\(D=1+4+4^2+...+4^{1993}\)
\(\Leftrightarrow4D=4+4^2+4^3+...+4^{1994}\)
hay \(D=\dfrac{4^{1994}-1}{3}\)
\(C=\dfrac{75C+25}{4^{1994}}=\dfrac{25\cdot4^{1994}-25+25}{4^{1994}}=25\)
rút gọn biểu thức A=75\(\left(4^{1993}+4^{1992}+...+4^2+5\right)\) +25
Đặt \(B=4^{1993}+4^{1992}+.......+4^2+1\)
\(\Rightarrow4B=4^{1994}+4^{1993}+....+4^3+4\)
\(\Rightarrow3B=4^{1994}-1\)
Mà: \(A=75B+25=25\left(3B+1\right)=25\left(4^{1994}-1+1\right)=25.4^{1994}\)
\(A=75\left(4^{1993}+5^{1992}+...+4^2+5\right)+25=75B+25\)
Xét \(B=4^{1993}+4^{1992}+...+4^2+5=4^{1993}+4^{1992}+...+4^2+4+1\)
\(\Rightarrow4B=4^{1994}+4^{1993}+...+4^2+4\)
\(\Rightarrow4B+1-4^{1994}=4^{1993}+4^{1992}+...+4^2+4+1=B\)
\(\Rightarrow3B=4^{1994}-1\Rightarrow B=\dfrac{4^{1994}-1}{3}\)
Vậy \(A=75.\dfrac{\left(4^{1994}-1\right)}{3}+25=25.4^{1994}-25+25\)
\(\Rightarrow A=25.4^{1994}\)
Rút gọn biểu thức:
\(A=75\left(4^{1993}+4^{1992}+....+4^2+5\right)+25\)
Ta có \(A=75\left(4^{1993}+4^{1992}+....+4+1\right)+25\)
\(\Leftrightarrow A=25\left(4-1\right)\left(4^{1993}+4^{1992}+...+4+1\right)+25\)
Vận dụng hằng đẳng thức
\(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+...+b^{n-1}\right)\)
Ta có
\(\left(4-1\right)\left(4^{1993}+4^{1992}+...+4+1\right)=4^{1994}-1\)
\(\Rightarrow A=25\left(4^{1994}-1\right)+25\)
\(\Leftrightarrow A=25\cdot4^{1994}\)
Vậy \(A=25\cdot4^{1994}\)
Tính hợp lí : 1-2-3+4+5-6-7+........+1992+1993-1994 ,giúp mk nhé!
Câu hỏi trong đề thi chọn học sinh giỏi toán lớp 8
Rút gọn biểu thức :
\(A=75.\left(4^{1993}+4^{1992}+...+4^2+5\right)+31\)
\(A=75\left(4^{1993}+4^{1992}+...+4^2+5\right)+31\)
\(=25\left(4-1\right)\left(4^{1993}+4^{1992}+...+4^2+4+1\right)+31\)
\(=25\left(4^{1994}+4^{1993}+...+4^3+4^2+4-4^{1993}-....-4-1\right)+31\)
\(=25.\left(4^{1994}-1\right)+31\)
\(=25.4^{1994}-25+31\)
\(=25.4^{1994}+6\)
Bài giải
\(A=75\cdot\left(4^{1993}+4^{1992}+...+4^2+4\right)+31\)
Đặt \(B=4^{1993}+4^{1992}+...+4^2+4\)
\(B=4+4^2+...+4^{1992}+4^{1993}\)
\(4B=4^2+4^3+...+4^{1993}+4^{1994}\)
\(4B-B=3B=4^{1994}-4\)
\(B=\frac{4^{1994}-4}{3}\)
Thay \(B=\frac{4^{1994}-4}{3}\) vào biểu thức ta có :
\(A=75\cdot\frac{4^{1994}-4}{3}+31\)
\(B=25\cdot3\cdot\frac{4^{1994}-4}{3}+31\)
\(B=25\cdot\left(4^{1994}-4\right)+31\)
Cho B= 75(41993+41992+....+4+1) + 25
Chứng tỏ rằng: B chia hết 100
=> B = 75.41993 + 75.41992 + ... + 75.4 + 75 + 25
= 25.3.4.41992 + 25.3.4.41991 + ... + 25.3.4 + 100
= 100.3.41992 + 100.3.41991 + ... + 100.3 + 100
= 100 ( 41992 + 41991 + .... + 3 + 1 ) CHIA HẾT CHO 100
vậy cho mình hỏi Đinh Đức Hùng, số 41993 sẽ sao ạ ?
Mình khai chiển 41993 = 4.41992 rồi như , bạn chưa nhìn ra àk
Rút gọn biểu thức:
A=75(41993+41992+…+42+5)+25
Rút gọn biểu thức:
A=75 .(41993+41992+...+42+5)+25
4/1x3x5 + 4/3x5x7 + 4/5x7x9 + 4/7x9x11 + 4/9x11x13
2.1991/1990 x 1992/1991 x 1993/1992 x 1994/1993 x 1995/997
ai lam dung minh tick
A = \(\dfrac{4}{1\times3\times5}\) + \(\dfrac{4}{3\times5\times7}\) +\(\dfrac{4}{5\times7\times9}\) + \(\dfrac{4}{7\times9\times11}\) + \(\dfrac{4}{9\times11\times13}\)
A = \(\dfrac{1}{1\times3}\)-\(\dfrac{1}{3\times5}\)+\(\dfrac{1}{3\times5}\)-\(\dfrac{1}{5\times7}\)+...+\(\dfrac{1}{9\times11}\)-\(\dfrac{1}{11\times13}\)
A = \(\dfrac{1}{1\times3}\) - \(\dfrac{1}{11\times13}\)
A = \(\dfrac{1}{3}-\dfrac{1}{143}\)
A = \(\dfrac{140}{429}\)
Bài 2:
A = \(\dfrac{1991}{1990}\) x \(\dfrac{1992}{1991}\) x \(\dfrac{1993}{1992}\) x \(\dfrac{1994}{1993}\) x \(\dfrac{1995}{997}\)
A = \(\dfrac{1994\times1995}{1990\times997}\)
A = \(\dfrac{997\times2\times5\times399}{5\times2\times199\times997}\)
A = \(\dfrac{399}{199}\)