Giải giúp mình bài này với:
Cho hình vuông ABCD, điểm M thuộc cạnh BC ( M khác B,C). Qua B kẻ đường thẳng vuông góc với DM, đường thẳng này cắt các đường thẳng DM và DC theo thứ thự tại H và K. Tính góc CHK
Xem giúp mình ý d) bài này với ạ :
Cho hình vuông ABCD, điểm M thuộc cạnh BC ( M khác B,C). Qua B kẻ đường thẳng vuông góc với DM, đường thẳng này cắt các đường thẳng DM và DC theo thứ thự tại H và K.
a) Chứng minh: Các tứ giác ABHD, BHCD nội tiếp đường tròn
b) Tính góc CHK
c) Chứng minh: KH.KB = KC.KD
d) Đường thẳng AM cắt đường thẳng DC tại N. Chứng minh :
\(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
d, tam giác AND đồng dạng với tam giác MAB (gg)=>AM/MB=AN/AD
=>AM.AD=AN.MB => AM^2.AD^2=AN^2.MB^2
Cộng 2 vế với AN^2.AD^2 =>AM^2.AD^2 + AN^2.AD^2 = AN^2.MB^2 + AN^2.AD^2
=>AD^2.(AM^2+AN^2)=AN^2(MB^2+AB^2)
=>AD^2(AM^2+AN^2)=AN^2.AM^2 (vì MB^2+AB^2=AM^2 theo định lý pytago)
=>1/AD^2=(AN^2+AM^2)/AM^2.AN^2
=>1/AD^2=1/AM^2+1/AN^2
cho hình vuông ABCD điểm M thuộc BC. qua B kẻ đường thẳng vuông góc với DM. Đường thẳng này cắt DM và DC tại H và K.
a. chứng minh Các tứ giác ABHD,BHCD nội tiếp đường tròn
b.Tính góc CHK
a, Điểm A và H cùng nhìn đoạn BD dưới 1 góc 90 =>tứ giác ABHD nội tiếp
cmtt : Điểm H và C cùng nhìn đoạn BD dưới 1 goc 90 => tứ giác BHCD nội tiếp
b, Tứ giác BHCD nội tiếp =>góc CHK=góc BDC ( vì cùng bù với góc CHB)
mà góc BDC=45=>góc CHK=45
cho hình vuông abcd canh m thuộc bc (m khác b m khác c) qua b kẻ đường thẳng vuông góc với tia dm cắt các đường thẳng dm dc theo thứ tự tại h và k a chứng minh các tứ giác abhd và bdch nội tiếp b tính góc chk
Cho hình vuông ABCD lấy một điểm bất kì thuộc M trên đoạn thẳng BC ( M khác BC ) qua B kẻ đường thẳng I với DM tại H, kéo dài BH cắt đường thẳng DC tại K a) Chứng minh tứ giác AHCD nội tiếp đường tròn. Tìm tâm đường tròn b) Chứng minh DB vuông góc với KM
a: góc BHD=góc BAD=góc BCD=90 độ
=>A,B,H,D,C cùng nằm trên đường tròn đường kính BD
=>AHCD nội tiếp
Tâm là trung điểm của BD
b: Xét ΔBDK có
BC,DH là đường cao
BC cắt DH tại M
=>M là trực tâm
=>KM vuông góc DB
Cho hình vuông ABCD, trên cạnh BC lấy điểm . Từ B kẻ đường thẳng vuông góc với DM, đường thẳng này cắt DM tại I, cắt DC tại K.
1. Cm tứ giác BDCI nội tiếp
2. Tính góc CIK
3. Cm: KI.KB=KC.KD
Cho hình vuông ABCD điểm E thuộc cạnh BC qua B kẻ đường thẳng vuông góc với DE đường thẳng này cắt các đường thẳng DE và DC theo thứ tự ở H và K
1.Chứng minh BHCD là tứ giác nội tiếp
2.tính góc CHK
3.chứng minh KC×KD=KH×KB
1) ta có: góc BHD= góc BCD= 90độ
tứ giác BHCD có hai đỉnh H,C BD có một góc vuông
➜tứ giác BHCD là tứ giác nội tiếp
2)tứ giác BHCD là tứ giác nội tiếp (đpcm)
➜góc BDC+ góc BEC = 180 độ
mà góc CHK+ góc BEC =180 độ (bù nhau)
➩góc BDC = 45 độ (đường chéo chứa hai góc bằng nhau)➩góc CHK = 45 độ
3)xét ΔDHK và ΔBCK, ta có:
góc DHK = góc BCK = 90 độ
góc DHK chung
➜ΔDHK ∞ ΔBCK (g.g)
➜\(\dfrac{KC}{KH}\cdot\dfrac{KB}{KD}\)➜KC*KD=KH*KB (đpcm)
Cho hình vuông ABCD, điểm E thuộc cạnh BC. Qua B kẻ đường thẳng vuông goc với DE, đường thẳng này cắt các đường thẳng DE và DC theo thứ tự ở H và K
a) Chứng minh rằng BHCD là tứ giác nội tiếp
b) Tính góc CHK =?
c) Chứng minh KC.KD=KH.KB
d) Khi điểm E chuyển động trên cạnh BC thì điểm H chuyển động trên đường nào?
a. Theo giả thiết ABCD là hình vuông nên ÐBCD = 900; BH vuông góc DE tại H nên góc BHD = 900
=> như vậy H và C cùng nhìn BD dưới một góc bằng 900 nên H và C cùng nằm trên đường tròn đường kính BD
=> BHCD là tứ giác nội tiếp.
b. BHCD là tứ giác nội tiếp
=> góc BDC + góc BHC = 1800. (1)
góc BHK là góc bẹt nên góc KHC + góc BHC = 1800 (2).
Từ (1) và (2) => góc CHK = góc BDC mà góc BDC = 450 (vì ABCD là hình vuông)
=> góc CHK = 450 .
c. Xét tam giác KHC và tam giác KDB ta có góc CHK = góc BDC = 450 ; góc K là góc chung
=> tam giác KHC ~ tam giác KDB =>\(\dfrac{KC}{KB}\) = \(\dfrac{KH}{KD}\)
=> KC x KD = KH x KB.
d.Ta luôn có góc BHD = 900 và BD cố định nên khi E chuyển động trên cạnh BC cố định thì H chuyển động trên cung BC (E ≡ B thì H ≡ B; E ≡ C thì H ≡ C).
hình vuông ABCD điểm M thuộc cạnh BC(M khác B,C) qua B kẻ đường thẳng vuông góc với DM đường thẳng này cắt các đường thẳng DM và DC theo thứ tự tại H và K
1,CM tứ giác ABHD,BHCD nội tiếp đường tròn
2,tính CHK
3,CM KH.KD=KC.KD
4,Đường thẳng AM cắt DC tại N. CMR: 1/AD2=1/AM2+1/AN2
Các bạn giúp mình phần 4 với ạ!!! AD2 là AD bình phương ạ! Cám ơn các bạn nhiều lắm !
ý 4 ak
4) tam giác AND đồng dạng với tam giác MAB (gg)
=>\(\frac{AM}{MB}=\frac{AN}{AD}\) =>AM.AD=AN.MB => AM2.AD2=AN2.MB2
Cộng 2 vế với AN2.AD2
=>AM2.AD2 + AN^2.AD2 = AN2.MB2 + AN2.AD2
=>AD2.(AM2+AN2)=AN2(MB2+AB2)
=>AD2(AM2+AN2)=AN2.AM2 (vì MB2+AB2=AM2 theo định lý pytago)
=>\(\frac{1}{AD^2}=\frac{\left(AN^2+AM^2\right)}{AM^2.AN^2}\)
=>\(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD, gọi M là trung điểm của cạnh AB; kẻ AH vuông góc với DM(H thuộc DM). Đường thẳng qua C và vuông góc với BH cắt đường thẳng DM tại K.
a,Chứng minh tam giác CDH là tam giác cân
b,Tính góc DKC?
c, Chứng minh BH song song AK