tìm n để phân số
D=\(\dfrac{n^3+2n}{n^4+3n^2+1}\) tối giản
Tìm n để các phân số sau tối giản:
A,\(\dfrac{3n+4}{n-1}\)
B,\(\dfrac{2n-9}{n-1}\)
C,\(\dfrac{n²-n-7}{n-1}\)
Help me
\(\dfrac{ }{ }\)Tìm n để các phân số sau là phân số tối giản:
a) 7n+1/14n+3
b) 2n+7/3n+10
c)2n+3/4n+4
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
Tìm n để các Phân số tối giản
a, 3n+4/n-1.
b,2n-9/n-1
c,n²-n-7/n-1
a) Để \(\dfrac{3n+4}{n-1}\) tối giản thì n không phải là giá trị sao cho \(\left(3n+4\right)⋮\left(n-1\right)\)
\(\left(3n+4\right)⋮\left(n-1\right)\Leftrightarrow\left(3n+4\right)-3\left(n-1\right)⋮\left(n-1\right)\)
\(\Leftrightarrow7⋮\left(n-1\right)\Rightarrow\left(n-1\right)\inƯ\left(7\right)\) (đoạn này tự lập bảng và kết luận)
b) Tương tự như câu a)
Tìm n thuộc Z để :
a) 2n+3/4n+1 là phân số tối giản
b) 3n+2/7n+1 là phân số tối giản
c) 2n+7/5n+3 là phân số tối giản
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
Tìm n để : 3n+1/2n+3 là phân số tối giản (nϵN)
Chứng minh những phân số sau là tối giản
\(G=\dfrac{2n+3}{4n+1}\) \(H=\dfrac{3n+2}{7n+1}\)
\(I=\dfrac{n+7}{n+2}\)
c: nếu n=3 thì đây ko phải phân số tối giản nha bạn
b: Nếu n=3 thì đây cũng ko phải phân số tối giản nha bạn
a: Nếu n=1 thì đây cũng ko phải phân số tối giản nha bạn
Cho Biểu Thức : \(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\left(n\in Z,n\ne3\right)\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là p/s tối giản
.
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
Bài 15: Chứng minh rằng các phân số sau là tối giản(n∈ N*)
a) \(\dfrac{n+1}{2n+3}\) . b) \(\dfrac{2n+3}{4n+8}\) .
c) \(\dfrac{3n+1}{4n+1}\) .
Lời giải:
a/
Gọi ƯCLN(n+1, 2n+3)=d$
Khi đó:
$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$
$2n+3\vdots d(2)$
Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản.
Câu b,c làm tương tự.