Cho a/b=c/d
Chứng minh a^2022+b^2022/c^2022+d^2022=(a+b)^2022/(c+d)^2022
cho tỉ lệ thức a/b=c/d với b,d khác 0, c không bằng -d. chứng minh rằng a^2022+b^2022/c^2022+d^2022 = (a+b)^2022/(c+d)^2022
Cho a+b=c+d va a^2+b^2=c^2+d^2.Chung minh rang:a^2022+b^2022=c^2022+d^2022
Moi nguoi giup minh voi,minh dang can gapcho a,b,c,d thuộc Z : d+b=a-c và ad+bc=1. Chứng minh b^2022=c^ 2022
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn:
x^2022+y^2022+z^2022+t^2022/a^2+b^2+c^2+d^2=x^2022/a^2+y^2022/b^2+z^2022/c^2+t^2022/d^2.
Tính T=x^2023+y^2023+z^2023+t^2023
a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)
\(\dfrac{154}{155}>\dfrac{154}{155+156}\)
\(\dfrac{155}{156}>\dfrac{155}{155+156}\)
=>154/155+155/156>(154+155)/(155+156)
=>A>B
b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)
2021/2022>2021/6069
2022/2023>2022/2069
2023/2024>2023/6069
=>D>C
Cho b^2=ác. CM:a^2022+b^2022/b^2022+c^2022=(a+b/b+c)^2022
Lời giải:
$b^2=ac\Rightarrow \frac{b}{a}=\frac{c}{b}$
Đặt $\frac{b}{a}=\frac{c}{b}=k\Rightarrow b=ak; c=bk$
Khi đó:
$\frac{a^{2022}+b^{2022}}{b^{2022}+c^{2022}}=\frac{a^{2022}+(ak)^{2022}}{b^{2022}+(bk)^{2022}}$
$=\frac{a^{2022}(1+k^{2022})}{b^{2022}(1+k^{2022})}=\frac{a^{2022}}{b^{2022}} (1)$
Và:
$(\frac{a+b}{b+c})^{2022}=(\frac{a+ak}{b+bk})^{2022}$
$=[\frac{a(k+1)}{b(1+k)}]^{2022}=(\frac{a}{b})^{2022}=\frac{a^{2022}}{b^{2022}}(2)$
Từ $(1); (2)$ ta có đpcm.
So sánh:
a) A=\(\dfrac{98^{88}+1}{98^{98}+1}\)và B=\(\dfrac{98^{89}+1}{98^{99}+1}\) b) C=\(\dfrac{2022^{2023}+1}{2022^{2021}+1}\)và D=\(\dfrac{2022^{2021}+1}{2022^{2019}+1}\)
a: \(98^{10}\cdot A=\dfrac{98^{98}+98^{10}}{98^{98}+1}=1+\dfrac{98^{10}-1}{98^{98}+1}\)
\(98^{10}\cdot B=\dfrac{98^{99}+98^{10}}{98^{99}+1}=1+\dfrac{98^{10}-1}{98^{99}+1}\)
98^88+1>98^99+1
=>A<B
b: \(\dfrac{1}{2022^2}\cdot C=\dfrac{2022^{2023}+1}{2022^{2023}+2022^2}=1+\dfrac{1-2022^2}{2022^{2023}+2022^2}\)
\(\dfrac{1}{2022^2}\cdot D=\dfrac{2022^{2021}+1}{2022^{2021}+2022^2}=1+\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
2022^2023>2022^2021
=>2022^2023+2022^2>2022^2021+2022^2
=>\(\dfrac{2022^2-1}{2022^{2023}+2022^2}< \dfrac{2022^2-1}{2022^{2021}+2022^2}\)
=>\(\dfrac{1-2022^2}{2022^{2023}+2022^2}>\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
=>C>D
Hai số có trung bình cộng là 2022 và hiệu hai số cũng là 2022. Tìm số lớn.
A. 2022 B. 1011 C. 3033 D. 4044
tổng 2 số là 2022 x 2 = 4044
số lớn là ( 4044 - 2022 ) : 2 = 1011
vậy đáp án là b nhé
( đây là bài toán lớp 4 )
Câu " C " nha
Tổng hai số là: 2022 x 2 = 4044
số lớn là : ( 4044 + 2022 ) : 2 = 3033
Đ/s : tự nha