Chứng minh rằng : x^2-2xy+y^2+1 >0 với mọi số thực x,y Giúo e với ạ. Em cần lời giải chi tiết
chứng minh rằng : x^2 - 2xy + y^2 + 1 > 0 với mọi số thực của x và y
\(=\left(x-y\right)^2+1\ge1>0,\forall x,y\)
\(x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\)
Vì \(\left(x-y\right)^2\ge0\) với mọi \(x,y\in R\)
\(\Rightarrow\left(x-y\right)^2+1\ge1\) với mọi \(x,y\in R\)
\(\Rightarrow\left(x-y\right)^2+1>0\) với mọi \(x,y\in R\) (đpcm)
Chứng minh rằng
x^2-2xy+y^2+1>0 với mọi số thực x và y
x-x^2-1<0 với mọi số thực x
Ta có : x2 - 2xy + y2 + 1 = (x - y)2 + 1
Vì : \(\left(x-y\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-y\right)^2+1\ge1\forall x\in R\)
Suy ra : \(\left(x-y\right)^2+1>0\forall x\in R\)
Vậy x2 - 2xy + y2 + 1 \(>0\forall x\in R\)
Ta có : x - x2 - 1
= -(x2 - x + 1)
\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì : \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\in R\)
Nên : \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)
Vậy x - x2 - 1 \(< 0\forall x\in R\)
hỏi tí cái chữ A ngược đó là gì vậy bạn
Chứng minh rằng
x^2-2xy+y^2+1>0 với mọi số thực x và y
x-x^2-1<0 với mọi số thực x
giúp mình với ah
\(x^2-2xy+y^2+1\)
\(=\left(x^2-2xy+y^2\right)+1\)
\(=\left(x-y\right)^2+1\)
vì \(\left(x-y\right)^2\ge0\Rightarrow\left(x-y\right)^2+1>0\forall x,y\)
vậy ................
chứng minh rằng: x^2-2xy-x+1+2y^2>0(với mọi số thực x;y)
\(x^2-2xy-x+1+2y^2=x^2-x\left(2y+1\right)+\frac{\left(2y+1\right)^2}{4}-\frac{\left(2y+1\right)^2}{4}+2y^2+1\)
\(=\left(x-\frac{2y+1}{2}\right)^2+\frac{1}{4}\left(2y-1\right)^2+\frac{1}{2}>0\)
đặt x^2+ax+b= (x-1)(x-m)
x^2+ax+b/x^2-1 = x-m/x+1
lim x-m/x+1=-1/2 suy ra 1-m/2=-1/2 nên m = 3
x^2+ax+b= (x-1)(x-3)=x^2-4x+3 suy ra a=-4, b=3
chứng minh
a, x^2-2xy+y^2+1>0 với mọi số thực x va y
b, x-x^2-1<0 với mọi số thực x
CHỨNG MINH RẰNG:
a) x^2+xy+y^2+1>0 với mọi x,y
b)6x^2+5y^2+2x-4xy-10y+14>0 với mọi x,y
giải chi tiết giùm nha,nhớ giải thích rõ.Cảm ơn nhiều.
Giải:
a) \(x^2+xy+y^2+1\)
\(=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
\(=\left(x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\ge1>0;\forall x\)
Vậy ...
Chứng minh :
a ) x2 _ 2xy + y2 + 1 > 0 với mọi số thực x và y.
b ) x - x2 - 1 < 0 với mọi số thực x .
các bạn ơi giải giúp mình bài này với nhé !
a) x2 - 2xy + y2 + 1 = (x-y)2 + 1 \(\ge\)1
=> (x-y)2 +1 >0 => x2 - 2xy + y2 >0
b) x - x2 - 1 = -(x2 - x + \(\frac{1}{4}\)) - \(\frac{3}{4}\)= - (x-\(\frac{1}{2}\))2 - \(\frac{3}{4}\)< 0 => x - x2 - 1 <0
a) Ta có:
\(x^2-2xy+y^2+1\)
\(=\left(x^2-2xy+y^2\right)+1\)
.\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)với mọi \(x,y\in R\)
\(\Rightarrow x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\ge0+1=1>0 \forall x,y\in R\left(đpcm\right)\)
b) Ta có :
\(x-x^2-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{2^2}+1-\frac{1}{2^2}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
Ta có :
\(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi số thực x
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\)với mọi số thực x
\(\Rightarrow x-x^2-1=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]< 0\)với mọi số thực ( đpcm )
chứng minh
-x^2+2xy-y^2-1<0 với mọi số thực x và y
\(\Leftrightarrow-1-\left(x-y\right)^2\le-1< 0\)