Lập bản biến thiên và vẽ đồ thị hàm số :a)y=x²-4x+2. b)y=x²+2x-1
y=-x^2+2x+3 có đồ thị là (p)
a)lập bảng biến thiên và vẽ đồ thị (p)của hàm số đã cho
b)tìm tọa độ các giao điểm của đồ thị (p) với đường thẳng y=4x-5
a, Bảng biến thiên:
Đồ thị hàm số:
b, Phương trình hoành độ giao điểm
\(-x^2+2x+3=4x-5\)
\(\Leftrightarrow x^2+2x-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Nếu \(x=2\Rightarrow y=3\Rightarrow\left(2;3\right)\)
Nếu \(x=-4\Rightarrow y=-21\Rightarrow\left(-4;-21\right)\)
lập bản biến thiên và vẽ đồ thị của hàm số sau:
b) y=x2 - 4x +3
e) y= -x2 + 4x -3
b: Tọa độ đỉnh của (P): y=x2-4x+3 là:
\(\left\{{}\begin{matrix}x=\dfrac{-b}{2a}=\dfrac{-\left(-4\right)}{2}=\dfrac{4}{2}=2\\y=-\dfrac{b^2-4ac}{4a}=-\dfrac{\left(-4\right)^2-4\cdot1\cdot3}{4}=-\dfrac{16-12}{4}=-1\end{matrix}\right.\)
Bảng biến thiên:
Vẽ đồ thị hàm số:
e: Tọa độ đỉnh của (P): y=-x2+4x-3 là:
\(\left\{{}\begin{matrix}x=\dfrac{-b}{2a}=\dfrac{-4}{2\cdot\left(-1\right)}=\dfrac{4}{2}=2\\y=-\dfrac{b^2-4ac}{4a}=-\dfrac{4^2-4\cdot\left(-1\right)\cdot\left(-3\right)}{4\cdot\left(-1\right)}=1\end{matrix}\right.\)
Bảng biến thiên:
vẽ đồ thị hàm số:
LẬP BẢNG BIẾN THIÊN VÀ VẼ ĐỒ THỊ CÁC HÀM SỐ
a, y=\(\sqrt{x}\)+\(\sqrt{x^2}-2x+1\)
b, y=\(\sqrt{x^2+4x+4}\)- I x-1 I
lập bảng biến thiên và vẽ đồ thị của hàm số y=x^2 - 2x +1( Giải giúp e với)
Lập bảng biến thiên và vẽ đồ thị hàm số
a) y = |x-1|+|2x-4|
b) y = \(\left\{{}\begin{matrix}2x-1,x\ge1\\-x+2,x< 1\end{matrix}\right.\)
Cho hàm số y=f(x) = 4x^2+ 6x-5 a) Lập bảng biến thiên và vẽ đồ thị hàm số y= f(×). b) Từ bảng biến thiên, xác định khoảng đồng biến và nghịch biến và giá trị nhỏ nhất của hàm số trên c) Từ bảng biến thiên tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [-1;2]
a: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)
Bảng biến thiên là:
x | -\(\infty\) -3/4 +\(\infty\) |
y | -\(\infty\) -29/4 +\(\infty\) |
b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4
GTNN của hàm số là y=-29/4 khi x=-3/4
Vẽ đồ thị của hàm số và lập bảng biến thiên:
y=|x^2-4x+3|
câu này cổ hình như mọi người quan tâm nhiều
f(x) = x^2 -4x +3 =(x-1)(x-3)= (x-2)^2 -1 >=-1
|f(x)| <= 1 khi x [1;3]
cắt trục Ox tại 1, 3
đồ thị
(phác thảo không đúng tỷ lệ)
a. Tìm tập xác định của hàm số y = \(\frac{x+1}{2x+7}\)
b. Lập bảng biến thiên và vẽ đồ thị hàm số y = x2 + 3x + 2.
cho hàm số y = -x-2x cộng 3 có đồ thị là (P) A, khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số B, tìm tạo độ giao điểm của (P) và đường thẳng y=4x+11