Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Dương
Xem chi tiết
Lan Anh (Min)
Xem chi tiết
Fudo
10 tháng 8 2020 lúc 15:10

Bạn vào câu hỏi tương tự là có nha !

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Khách vãng lai đã xóa
Lan Anh (Min)
10 tháng 8 2020 lúc 15:11

Ko cs đầy đủ bn ơi!

Khách vãng lai đã xóa
FL.Hermit
10 tháng 8 2020 lúc 15:13

a) 

\(3A=3+3^2+3^3+...+3^{100}\)

=> \(3A-A=\left(3+3^2+...+3^{100}\right)-\left(1+3+...+3^{99}\right)\)

=> \(2A=3^{100}-1\)

=> \(A=\frac{3^{100}-1}{2}\)

=> \(A=\frac{9^{50}-1}{2}\)    => \(\frac{A}{4}=\frac{9^{50}-1}{8}\)

Có: \(9\equiv1\left(mod8\right)\)

=> \(9^{50}\equiv1\left(mod8\right)\)

=> \(9^{50}-1⋮8\)

=> \(\frac{9^{50}-1}{8}\in Z\)

=> \(\frac{A}{4}\in Z\)=> \(A⋮4\)

(ĐPCM)

Khách vãng lai đã xóa
Đoàn Hà Phương
Xem chi tiết
Chi
19 tháng 10 2020 lúc 19:51

A=(1+4+42)+(43+44+45)+...........+(496+497+498)

A=1.21 + 43.21 + 496.21

Vì 21 chia hết cho 21 nên A chia hết cho 21

 Thưn lắm mới giúp em đók kkk

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
19 tháng 10 2020 lúc 19:52

A = 1 + 4 + 42 + 43 + ... + 498

= ( 1 + 4 + 42 ) + ( 43 + 44 + 45 ) + ... + ( 496 + 497 + 498 )

= 21 + 43( 1 + 4 + 42 ) + ... + 496( 1 + 4 + 42 )

= 21 + 43.21 + ... + 496.21

= 21( 1 + 43 + ... + 496 ) chia hết cho 21 ( đpcm )

Khách vãng lai đã xóa
Đoàn Như Ý
Xem chi tiết
trần phương mai
Xem chi tiết
fidlend
Xem chi tiết

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

Xem chi tiết
Nguyễn Thảo Uyên
3 tháng 1 2020 lúc 18:40

Ta có:

A = 4 + 4 + 43 + 44 + ... + 499 + 4100

A = (4 + 42) + (43 + 44) + ... + (499 + 4100)

A = 4(1 + 4) + 43(1 + 4) + ... + 499(1 + 4)

A = 4.5 + 43.5 + ... + 499.5

A = 5.(4 + 43 + ... + 499)

Vậy A chia hết cho 5

Khách vãng lai đã xóa
Sinh Học
3 tháng 1 2020 lúc 18:43

\(A=4+4^2+4^3+...4^{99}+4^{100}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(A=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{99}.\left(1+4\right)\)

\(A=4.5+4^3.5+..4^{99}.5\)

\(A=5.\left(4+4^3+...4^{99}\right)\)

\(\Rightarrow A⋮5\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
14 tháng 4 2020 lúc 15:57

A=4+42+43+44+......+499+4100

=> A=(4+42)+(43+44)+......+(499+4100)

=> A=4(1+4)+43(1+4)+.....+499(1+4)

=> A=4.5+43.5+.....+499.5

=> A=5(4+43+....+499)

=> A chia hết cho 5 (đpcm)

Khách vãng lai đã xóa
Son GoHan
Xem chi tiết
Nguyễn Thu Hà
Xem chi tiết