m) 2x+ 2x+1+ 2x+2 = 56
1.tìm x:
a.7x^2-16x=2x^3-56
b.x^7+x^3+2x^5+2x=0
c.(2x+1)x-5(x+1/2)=0
a: \(\Leftrightarrow2x^3-56-7x^2+16x=0\)
\(\Leftrightarrow2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
=>2x-7=0
hay x=7/2
b: \(\Leftrightarrow x^5\left(x^2+2\right)+x\left(x^2+2\right)=0\)
=>x(x2+2)(x4+1)=0
=>x=0
c: \(\Leftrightarrow2x^2+x-5x-\dfrac{5}{2}=0\)
\(\Leftrightarrow2x^2-4x-\dfrac{5}{2}=0\)
hay \(x\in\left\{\dfrac{5}{2};-\dfrac{1}{2}\right\}\)
2x+2x+1+2x+2=56
\(2^x+2^{x+1}+2^{x+2}=56\)
\(2^x+2^x.2+2^x.2^2=56\)
\(2^x.\left(1+2+4\right)=56\)
\(2^x.7=56\)
\(2^x=8\)
\(=>2^x=2^3\)
\(=>x=3\)
`2^x+2^x*2+2^x*2^2=56`
`2^x+2^x*2+2^x*4=56`
`2^x*(1+2+4)=56`
`2^x*7=56`
`2^x=56 \div 7`
`2^x=8`
`2^x=2^3`
`-> x=3`
a)2x+2x+1+2x+2=56
b)3x+3x+2+3x+3=111
a) Ta có 2x + 2x + 1 + 2x + 2 = 56
⇒ 2x ( 1 + 21 + 22 ) = 56
⇒ 2x . 7 = 56
⇒ 2x = 56 : 7 = 8 = 23
Vậy x = 3
b) Ta có 3x + 3x + 2 + 3x + 3 = 111
⇒ 3x ( 1 + 32 + 33 ) = 111
⇒ 3x . 37 = 111
⇒ 3x = 111 : 37 = 3 = 31
Vậy x = 1
a,( x-1)^7 = (1-x)^10
b,(2x-3)^5 = (3-2x)^9
c,2^n+2 + 2^n+1-2^n = 56
d, 2^m + 2^n = 2^m+n
Cho mk sửa lại ở câu c là 2^n+2 + 2^n+1 - 2^n = 56 nha!
1.tìm x:
a.7x^2-16x=2x^3-56
b.x^7+x^3+2x^5+2x=0
c.(2x+1)x-5(x+1/2)=0
a) \(7x^2-16x=2x^3-56\)
\(\Leftrightarrow\)\(2x^3-7x^2+16x-56=0\)
\(\Leftrightarrow\)\(2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x-7\right)\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(2x-7=0\)
\(\Leftrightarrow\)\(x=3,5\)
Vậy...
b) \(x^7+x^3+2x^5+2x=0\)
\(\Leftrightarrow\)\(x.\left(x^6+x^2+2x^4+2\right)=0\)
\(\Leftrightarrow\)\(x\left(x^2+2\right)\left(x^4+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)
Vậy...
c) \(\left(2x+1\right)x-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(2x\left(x+\frac{1}{2}\right)-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\left(2x-5\right)\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-5=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2,5\\x=-0,5\end{cases}}\)
Vậy...
1, \((2x+3)^4=16\)
2,\(|2x-4|=|5x+56|\)
Các bạn làm được mình tick cho !
1.
\(\left(2x+3^{ }\right)^4=16\)
⇔\(\left(2x+3\right)^4=2^4\)
⇔\(2x+3=2\)
⇔\(2x=5\)
⇔\(x=\frac{5}{2}\)
Vậy....
Giải phương trình sau
\(\frac{2x-1}{4x^2+2x+1}\) \(-\frac{2}{2x-1}=\frac{8x+2}{1-8x^3}\)
\(\frac{2x+9}{x^2+9x+8}-\frac{2x+15}{x^2+15x+56}+\frac{2x+10}{x^2+10x+21}=\frac{4}{3}\)
nhờ mọi người giải cụ thể đc ko ạ .
1) tìm x biết
a, 2x - (-9) = x - (-15) b, 56+5x = 2x + 11
a, 2x - (-9) = x-(-15)
2x + 9 = x+15
2x - x = 15 -9
x = 6
b, 56 + 5x = 2x + 11
5x - 2x = 11 - 56
3x = -45
x = (-45) : 3
x = -15
a) 2x - (-9) = x - (-15)
=> 2x +9 = x + 15
=> 2x - x = 15 - 9
=> x(2-1) = 6
=> x.1 = 6
b) 56 + 5x = 2x + 11
=> 5x -2x = 11 - 56
=> x (5-2) = -45
=> x.3 = -45
=> x = -45: 3
=> x = -15
Tìm x,y,z
1, x:y:z=5:7:10 và 2x+y-z=-21
2, X:y:z=3:4:6 và 4y-2x+3z=-56
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{7}=\frac{z}{10}=\frac{2x}{10}=\frac{y}{7}=\frac{z}{10}$
$=\frac{2x+y-z}{10+7-10}=\frac{-21}{7}=-3$
$\Rightarrow x=-3.5=-15; y=-3.7=-21; z=-3.10=-30$
2.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{2x}{6}=\frac{4y}{16}=\frac{3z}{18}$
$=\frac{4y-2x+3z}{16-6+18}=\frac{-56}{28}=-2$
$\Rightarrow x=-2.3=-6; y=-2.4=-8; z=-2.6=-12$