(2x+1)^2=36/25
\(\left(2x+1\right)^2=\dfrac{36}{25}\)
\(\left(2x+1\right)^2=\left(\dfrac{6}{5}\right)^2\\ 2x+1=\dfrac{6}{5}\)
Còn lại tự tính;-;
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{6}{5}\\2x+1=-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{5}\\2x=-\dfrac{11}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{10}\\x=-\dfrac{11}{10}\end{matrix}\right.\)
\(\left(2x+1\right)^2=\dfrac{36}{25}\\ \Leftrightarrow\left[{}\begin{matrix}\left(2x+1\right)^2=\left(\dfrac{6}{5}\right)^2\\\left(2x+1\right)^2=\left(-\dfrac{6}{5}\right)^2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{6}{5}\\2x+1=-\dfrac{6}{5}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{5}\\2x=-\dfrac{11}{5}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{10}\\x=-\dfrac{11}{10}\end{matrix}\right.\\ \Rightarrow S=\text{ }\left\{-\dfrac{11}{10};\dfrac{1}{10}\right\}\)
36(x-y)-25(2x-1)2
Tính
36(x-y)^2-25(2x-1)^2
\(36\left(x-y\right)^2-25\left(2x-1\right)^2\)
\(=36\left(y^2-2xy+x^2\right)-25\left(4x^2-4x+1\right)\)
\(=36y^2-72xy+36x^2-100x^2+100x-25\)
\(=36y^2-72xy-64x^2+100x-25\)
1,x^2+2x+1/2x^2-2
2,x^2-6x+9/5x^2-45
3,x^2-12x+36/2x^2-4x
4,x^2-10x+25/2x^2-50
1, \(\frac{x^2+2x+1}{2x^2-2}=\frac{\left(x+1\right)^2}{2\left(x^2-1\right)}=\frac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}=\frac{x+1}{2\left(x-1\right)}\)= \(\frac{x+1}{2x-2}\)
2 \(\frac{x^2-6x+9}{5x^2-45}=\frac{\left(x-3\right)^2}{5\left(x^2-9\right)}=\frac{\left(x-3\right)^2}{5\left(x-3\right)\left(x+3\right)}=\frac{x-3}{5x+15}\)
3 \(\frac{x^2-12x+36}{2x^2-4x}=\frac{\left(x-6\right)^2}{2x\left(x-2\right)}\)
4 \(\frac{x^2-10x+25}{2x^2-50}=\frac{\left(x-5\right)^2}{2\left(x^2-25\right)}=\frac{\left(x-5\right)^2}{2\left(x-5\right)\left(x+5\right)}=\frac{x-5}{2x+10}\)
TÌM X:
(2x+1)2 =25
(2x-3)2 =36
a)(2x+1)2=25=52=(-5)2
=>2x+1=5 hoặc 2x+1=-5
2x=5-1 2x=-5-1
2x=4 2x=-6
x=4/2 x=-6/2
x=2 x=-3
Vậy x=2 hoặc x=-3
b)(2x-3)2=36=62=(-6)2
=>2x-3=6 hoặc 2x-3=-6
2x=6+3 2x=-6+3
2x=9 2x=-3
x=9/2 x=-3/2
Vậy x=9/2 hoặc x=-3/2
(2x+1)2 = 25
=> 2x2 + 12 = 25
=> 2x2 + 1 = 25
=> 2x2 = 24
=> x2 = 12
=> x = \(\sqrt{12}\)
(2x - 3)2 = 36
=> 2x2 - (32) = 36
=> 2x2 - 9 = 36
=> 2x2 = 45
=> x2 = 22,5
=> x = \(\sqrt{22,5}\)
t i c k nha!! 65768769789890
a)(2x+1)2 =25
<=>(2x+1)2 =52
<=>2x+1=5
<=>2x=4
<=>x=2
b)(2x-3)2 =36
<=>(2x-3)2 =62
<=>2x-3=6
<=>2x=9
<=>x=4,5
Tìm x
( x - 2)^2 = 9x 16
(2x + 1)^2 = 25
(x - 4)^2 = 36
1) ( 2x + 1 ) ^2 = 25
2) 5 ^x+2 = 625
3) ( 2x - 3 ) ^2 = 36
4) ( 2x - 1 ) ^3 = - 8
5) ( x - 1 ) ^x+2 = ( x - 1 ) ^x + 6 với x thuộc Z 19 . x^2 + x = 0
1) ( 2x + 1 )2 = 25
=> ( 2x + 1 )2 = 52
=> 2x + 1 = 5 hoặc 2x + 1 = -5
=> 2x = 4 hoặc 2x = -6
=> x = 2 hoặc x = -3
2) 5x+2 = 625
=> 5x+2 = 54
=> x + 2 = 4
=> x = 2
3) ( 2x - 3 )2 = 36
=> ( 2x - 3 )2 = 62
=> 2x - 3 = 6 hoặc 2x - 3 = -6
=> 2x = 9 hoặc 2x = -3
=> x = 9/2 hoặc x = -3/2
4) ( 2x - 1 )3 = -8
=> ( 2x - 1 )3 = ( -2 )3
=> 2x - 1 = -2
=> 2x = -1
=> x = -1/2
(2x-3)3 = -64
(2x-3)2 =25
(3x-4)2 =36
2x+1 = 64
a, (2x-3)3 = -64
=> (2x-3)3 = -43
=> 2x-3=-4
=> 2x = -1
=> x = -1 : 2
=> x = -1/2
b, (2x-3)2 =25
=> (2x-3)2 =5^2
=> 2x-3 = 5
=> 2x = 8
=> x = 4
c, (3x-4)2 =36
=> (3x-4)2 =62
=> 3x-4 = 6
=> 3x = 10
=> x = 3.(3)
d, 2x+1 = 64
=> 2x+1 = 26
=> x+1 = 6
=> x = 5
a/ (2x - 3)3 = -64 => (2x - 3)3 = (-4)3 => 2x - 3 = -4 => 2x = -1 => x = -1/2
b/ (2x - 3)2 = 25 => (2x - 3)2 = 52 => 2x - 3 = 5 => 2x = 8 => x = 4
c/ (3x - 4)2 = 36 => (3x - 4)2 = 62 => 3x - 4 = 6 => 3x = 10 => x = 10/3
d/ 2x+1 = 64 => 2x+1 = 26 => x + 1 = 6 => x = 5
(Bài 14; Tìm x biết
1) x ^ 2 - 9 = 0
4) 4x ^ 2 - 4 = 0
7) (3x + I) ^ 2 - 16 = 0
10) (x + 3) ^ 2 - x ^ 2 = 45
2) 25 - x ^ 2 = 0
5) 4x ^ 2 - 36 = 0
8) (2x - 3) ^ 2 - 49 = 0
11) (5x - 4) ^ 2 - 49x ^ 2 = 0
3) - x ^ 2 + 36 = 0
6) 4x ^ 2 - 36 = 0
9) (2x - 5) ^ 2 - x ^ 2 = 0
12) 16 * (x - 1) ^ 2 - 25 = 0
1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
7, (3\(x\) + 1)2 - 16 = 0
(3\(x\) + 1 - 4)(3\(x\) + 1 + 4) = 0
(3\(x\) - 3).(3\(x\) + 5) = 0
\(\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=3\\3x=-5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {1; - \(\dfrac{5}{3}\)}
10, (\(x\) + 3)2 - \(x^2\) = 45
[(\(x\) + 3) - \(x\)].[(\(x\) + 3) + \(x\)] = 45
3.(2\(x\) + 3) = 45
2\(x\) + 3 = 15
2\(x\) = 12
\(x\) = 6