(1.2+2.3+3.4+4.5+...+101.101).0+2
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
1.2+2.3+3.4+4.5+...+99.100
1.2+2.3+3.4+4.5+...+99.100
=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6+...+99.100.101
=99.100.101=999900
=999900:3=333300
S=2/1.2+2/2.3+2/3.4+2/4.5+.........2/101.102
S = 2/1×2 + 2/2×3 + 2/3×4 + 2/4×5 + ... + 2/101×102
B = 2 × (1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/101×102)
B = 2 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/101 - 1/102)
B = 2 × (1 - 1/102)
B = 2 × 101/102
B = 101/51
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{100.101}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{100}-\frac{1}{101}\right)\)
\(=2.\left(1-\frac{1}{101}\right)\)
\(=2.\frac{100}{101}=\frac{200}{101}\)
1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100
Gọi A = 1.2 + 2.3 + 3.4 +...+ 99.100
3A = 1.2.(3 - 0) + 2.3.(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 99.100.101 - 89.99.100
= 99.100.101 = 999900
A = 999900 : 3 = 333300
vậy A = 333300
1.2+2.3+3.4+4.5+...+99.100 = ?
Nhân cả 2 vế với 3, ta được:
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
=> A = (99.100.101):3
A = 333300
Vậy A = 333300
1.2+2.3+3.4+4.5+...+98.99
A=1.2+2.3+3.4+........+98.99
3A=1.2.3+2.3.3+3.4.3+........+98.99.3
3A=1.2.3+2.3.(4 -1) +3.4.(5 -2)+........+98.99.(100 -97)
3A=1.2.3+2.3.4 -1.2.3 +3.4.5 -2.3.4 +........+98.99.100 -97.98.99
3A=98.99.100
=>A=(98.99.100)/3
A=323400
A=1.2+2.3+3.4+........+98.99
3A=1.2.3+2.3.3+3.4.3+........+98.99.3
3A=1.2.3+2.3.(4 -1) +3.4.(5 -2)+........+98.99.(100 -97)
3A=1.2.3+2.3.4 -1.2.3 +3.4.5 -2.3.4 +........+98.99.100 -97.98.99
3A=98.99.100
=>A=(98.99.100)/3
1.2+2.3+3.4+4.5+.......+1999.2000
ban chi can nhan tat co cac do hang voi3 xong sau do ban tinh
ban chi can nhan cac so hang voi 3 la duoc
1.2+2.3+3.4+4.5+...+98.99
A=1.2+2.3+3.4+........+98.99
3A=1.2.3+2.3.3+3.4.3+........+98.99.3
3A=1.2.3+2.3.(4 -1) +3.4.(5 -2)+........+98.99.(100 -97)
3A=1.2.3+2.3.4 -1.2.3 +3.4.5 -2.3.4 +........+98.99.100 -97.98.99
3A=98.99.100
===>A=(98.99.100)/3
Tính tổng: S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.
`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`
`3S = 1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`
`3S = 1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`
`3S = 99.100.101`
`S = 33.100.101`
`S = 333300`
3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100
=99.100.101
S=33.100.101
=333300