Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xuân Mai Nguyễn
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
5 tháng 9 2019 lúc 10:01

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\)

\(\Rightarrow a^{23}+b^{23}=-b^{23}+b^{23}=0\)

Vậy \(\left(a^{23}+b^{23}\right)\left(a^{1995}+c^{1995}\right)=0\)

Lê Vũ Anh Thư
Xem chi tiết
Girl
13 tháng 3 2019 lúc 20:57

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+abc+abc+bc^2+ac^2=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\Leftrightarrow...\)

\(P=0\)

Lê Vũ Anh Thư
Xem chi tiết
Lê Thành Đạt
Xem chi tiết
Hien Pham
Xem chi tiết
Trương Cao Quốc Anh
Xem chi tiết
nguyễn thị lan hương
10 tháng 5 2018 lúc 15:55

ta có a+b+c=0       =>     a=-b-c,         b=-a-c,            c=-a-b

thay vào A ta được 

 A=(1-(b+c)/b)(1-(a+c)/c)(1-(a+b)/a)

   =(1-1-c/b)(1-1-a/c)(1-1-b/a)

   =(-c/b)(-a/c)(-b/a)

   =(-abc)/abc

    =-1

Không Tên
10 tháng 5 2018 lúc 19:57

bạn Nguyễn Thị Lan Hương làm đúng rồi, mk lm cách khác nhé:

           BÀI LÀM

          \(a+b+c=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

    \(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

    \(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{b}=-1\)

Ngọc Hoàng
Xem chi tiết
Phạm Hải Thu Hà
Xem chi tiết
Xem chi tiết

mk nhầm 1+c/a

nguyễn_tt
14 tháng 9 2019 lúc 16:19

Ta có : \(a+b+c\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}\left(\cdot\right)}\)

\(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)

\(=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)

\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\left(do\cdot\right)\)

\(=-1.-1.-1\)

\(=-1\)