Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:
\(a,\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
\(b,\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)
1,cho a,b,c là số thực dương thỏa mãn
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}=3\)
và \(\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+\frac{1}{\left(a-b\right)^2}=1\)
Tính
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\)
Cho a,b,c là 3 số nguyên khác 0 thỏa mãn:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\).CMR:\(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)là số chính phương
Cho 3 số thực dương a, b, c.
Chứng minh rằng: \(\frac{b}{a\left(a+b\right)}+\frac{c}{b\left(b+c\right)}+\frac{a}{c\left(c+a\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a, b, c là số ba số dương thỏa mãn a.b.c = 1. Chứng minh rằng: \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Cho 3 số a,b,c khác 0 và thỏa mãn \(a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)=-2\) và a3 + b3 + c3 = 1. CMR
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Cho a,b,c là 3 số thực dương thỏa mãn abc = 1. CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Bài 1. Cho a+b+c=0. Đặt P=\(\frac{a-b}{b}+\frac{b-c}{a}+\frac{c-a}{b}\); Q=\(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\).Tính P.Q
b) Rút gọn rồi tính giá trị biểu thức E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\)biết \(1-\frac{x^2}{abc}=0\)
Giải phương trình:
a,\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)(x là ẩn số)
b,\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+c\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)
Giúp hộ!!!