Cho tam giác ABC có A >90 độ , AB=AC các đường trục trực của các cạnh AB, AC cắt nhau tại O và lần lượt cắt cạnh BC tai D và E . CMR
a) O là tâm đường tròn ngoại tiếp của tam giác ABC
b) góc DAB = góc EAC
Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là tiếp điểm của (O) với các cạnh AB,AC,BC. Đường thẳng BO cắt các đường thẳng EF và DF lần lượt tại I và K.
1. Tính số đo góc BIF
1. Vì BD, BF là các tiếp tuyến của (O) nên OD ⊥ BD, OF ⊥ BF.
Xét 2 tam giác vuông OBD và OBF có
O B chung OBD=OBF(gt) = > Δ O B D = Δ O B F (cạnh huyền–góc nhọn)
⇒ BD = BF
Mà OD = OF = r nên OB là trung trực của DF ⇒ OB ⊥ DF ⇒ ∆ KIF vuông tại K.
Mà OD = OF = r nên OB là trung trực của DF ⇒ OB ⊥ DF ⇒ ∆ KIF vuông tại K. D O E = 90 o
Theo quan hệ giữa góc nội tiếp và góc ở tâm cho đường tròn (O), ta có:
D F E = 1 2 D O E = 45 o
⇒ ∆ KIF vuông cân tại K.
=>BIF=45o
Cho tam giác ABC , AB> AC ngoại tiếp đường tròn (I ) và nội tiếp đường tròn (O). Đường tròn (I ) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi H là hình chiếu vuông góc của D trên EF. Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại K (K khác A).
a) Chứng minh HD là phân giác của góc BHC .
b) Chứng minh ba điểm I, H, K thẳng hàng.
Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E,BD và CE cắt nhau tại H.
a) Chứng minh: AEHD nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác AEHD
b) Chứng minh: IE là tiếp tuyến của đường tròn (O)
c) Vẽ đường lính EF của đường tròn (I),OF cắt đường tròn (I) tại M ,OI cắt ED tại K.Chứng minh: Tứ giác MKIF nội tiếp.
a: góc BEC=góc BDC=1/2*sđ cung BC=90 độ
=>CE vuông góc AB, BD vuông góc AC
góc AEH=góc ADH=90 độ
=>AEHD nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
b: Gọi giao của AH với BC là N
=>AH vuông góc BC tại N
góc IEO=góc IEH+góc OEH
=góc IHE+góc OCE
=90 độ-góc OCE+góc OCE=90 độ
=>IE là tiếp tuyến của (O)
Cho tam giác ABC (góc A=90 độ). Các đường trung trực của cạnh AB và AC cắt nhau ở O và cắt BC theo thứ tự D và E.
a) Các tam giác ABD và ACE là tam giác gì?
b) Đường tròn tâm O, bán kính OA đi qua những điểm nào trong hình vẽ?
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
Cho tam giác ABC(AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC. Chứng minh EFDO là tứ giác nội tiếp.
a: Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: AH vuông góc với BC tại D
b:
Xét tứ giác CDFA có góc CDA=góc CFA=90 độ
nên CDFA là tứ giác nội tiếp
=>góc BFD=góc BCA
Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
=>góc AFE=góc ACB
Ta có: góc COE=180 độ-2 góc C
góc EFD=180 độ-góc AFE-góc BFD
=180 độ-2 góc C
=>góc COE=góc EFD
=>DOEF là tứ giác nội tiếp
Cho tam giác ABC có ba góc nhọn (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC cad AB lần lượt tại E và F. Gọi H là giao điểm của BE cà CF. AH cắt cạnh BC tại D.
a) Chứng minh các tứ giác BFEC, BFHD, CEHD nội tiếp đường tròn.
b) Qua O kẻ đường thẳng vuông góc với BC cắt DE và DF lần lượt tại G và I. Chứng minh BGCI là hình thoi
Bài 11:Cho đường tròn(O) đường kính AB=2R. Điểm C thuộc đường tròn(C không trùng với A và B).Trên nửa mặt phẳng bờ AB có chứa điểm C kẻ tiếp tuyến à với (O).Gọi M là điểm chính giữa cung nhỏ AC. Tia BC cắt Ax tại Q,AM cắt BC tại N, AC cắt BM tại P.
a) Gọi K là điểm chính giữa cung AB(cung không chứa C).HỎi có thể xảy ra trường hợp 3 điểm Q,M,K thẳng hàng không?
b) Xác định vị trí của C trên nửa đường tròn tâm O để đường tròn ngoại tiếp tam giác MNQ tiếp xúc với (O).
Bài 12: Cho tứ giác ABCD có đường chéo BD không là phân giác của góc ABC và góc CDA.Một điểm P nằm trong tứ giác sao cho góc PBC=góc DBA; góc PDC = góc BDA.Chứng minh rằng tứ giác ABCD nội tiếp khi và chỉ khi AP=CP
Bài 13:Cho tam giác ABC có chu vi bằng 2p không đổi ngoại tiếp 1 đường tròn(O).Dựng tiếp tuyến MN với (O) sao cho MN song song với AC;M thuộc cạnh AB,N thuộc cạnh BC.Tính AC theo p để độ dài đoạn MN đạt giá trị lớn nhất.
Bài 14: Trong một tam giác cho trước hãy tìm bán kính lớn nhất của hai đường tròn bằng nhau tiếp xúc ngoài nhau đồng thời mỗi đường tròn tiếp xúc với hai cạnh của tam giác đó.
Bài 15: Trên cạnh AB của tam giác ABC lấy một điểm D sao cho đường tròn nột tiếp tam giác ACD và BCD bằng nhau
a) Tính đoạn CD theo các cạnh của tam giác
b)CMR: Điều kiện cần và đủ để góc C = 90 độ là điện tích tam giác ABC bằng diện tích hình vuông cạnh CD
Bài 16: Cho hình thang vuông ABCD có AB là cạnh đáy nhỏ,CD là cạnh đáy lớn,M là giao của AC và BD.Biết rằng hình thang ABCD ngoại tiếp đường tròn bán kính R.Tính diện tích tam giác ADM theo R
Bài 17:Cho tam giác ABC không cân,M là trung điểm cạnh BC,D là hình chiếu vuông góc của A trên BC; E và F tương ứng là các hình chiếu vuông góc của B và C trên đường kính đi qua A của đường tròn ngoại tiếp tam giác ABC.CMR: M là tâm đường tròn ngoại tiếp tam giác DEF
Bài 18: Cho đoạn thẳng AB, điểm C nằm giữa A và B, Tia Cx vuông góc với AB.Trên tia Cx lấy D và E sao cho CECB=CACD=3√CECB=CACD=3. Đường tròn ngoại tiếp tam giác ADC cắt đường tròn ngoại tiếp tam giác BEC tại H(H khác C). CMR: HC luôn đi qua một điểm cố định khi C chuyển động trên đoạn AB.Bài toán còn đúng không khi thay 3√3 bởi m cho trước(m>0)
Bài 19: Cho tam giác ABC nhọn và điểm M chuyện động trên đường thẳng BC.Vẽ trung trực của các đoạn BM và CM tương ứng cắt các đường thẳng AB và AC tại P và Q.CMR: Đường thẳng qua M và vuông góc với PQ đi qua 1 điểm cố định
Bài 20: Cho tam giác ABC và một đường tròn (O) đi qua A và C.Gọi K và N là các giao điểm của (O) với các cạnh AB,C.ĐƯờng tròn (O1) và (O2) ngoại tiếp tam giác ABC và tam giác KBN cắt nhau tại B và M.CMR: O1O2 song song với OM
Giúp t vs..^^^
làm hết dc đống bài này chắc mình ốm mất
Quá nhiều ! ai mà giải hết được chứ !