Tìm n\(\in\)N* để: \(A=\left(n+3\right).\left(4n^2+14n+7\right)\)là số chính phương.
Tìm số nguyên dương n sao cho\(\left(n+3\right)\left(4n^2+14n+7\right)\) là một số chính phương
Ta thấy: \(4n^2+14n+7=\left(n+3\right)\left(4n+2\right)+1\)
Do n là số nguyên dương \(\Rightarrow4n^2+14n+7\)và n+3 nguyên tố cùng nhau
\(\Rightarrow\left(n+3\right)\left(4n^2+14n+7\right)\)là 1 SCP thì n+3 và \(4n^2+14n+7\)là 1 số chính phương
Do n nguyên dương \(\Rightarrow\left(2n+3\right)^2\le4n^2+14n+7< \left(2n+4\right)^2\)\(\Rightarrow4n^2+14n+7=\left(2n+3\right)^2\Leftrightarrow n=1\)khi đó n+3=4 là 1 scp
Thử lại với n=1 \(\left(n+3\right)\left(4n^2+14n+7\right)=100\left(tm\right)\)
Vậy n=1
Tìm số tự nhiên n để \(\left(n+3\right)\left(4n^2+14n+7\right)\)là số chính phương
Ai làm nhanh và đúng mình tick cho 3 tick!!!
Tìm số ngyên n để: [n+3].[4n2+14n+7] là số chính phương
Tìm n∈N* để: A=(n+3)(4n2+14n+7) là số chính phương
Tìm n∈N* để: A=(n+3)(4n2+14n+7) là số chính phương
Tìm n∈N* để: A=(n+3)(4n2+14n+7) là số chính phương
số chính phương thì mình chưa học đến
Chứng minh với n tự nhiên,\(n\ge6\) thì
an=\(1+\frac{2.6.10....\left(4n-2\right)}{\left(n+5\right)\left(n+6\right)\left(n+7\right)....2n}\) là số chính phương
Cho \(n\in N\)chứng minh:
\(A=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)+3\)không là số chính phương
bon so lien tiep chia het cho 8
A=8k+3
so chinh phuong le chi co dang 8k+1
A ko cp
Chứng minh rằng : \(a_n=\frac{2.4.6.....\left(4n-2\right)}{\left(n+5\right)\left(n+6\right)...\left(2n\right)}+1\) là số chính phương