Tìm số ngyên n để: [n+3].[4n2+14n+7] là số chính phương
Tìm n∈N* để: A=(n+3)(4n2+14n+7) là số chính phương
Tìm n∈N* để: A=(n+3)(4n2+14n+7) là số chính phương
Tìm n∈N* để: A=(n+3)(4n2+14n+7) là số chính phương
1) Cho tổng:
A = 4n + 4 \(\left(n\in Z\right)\) . Tìm n để A chia hết cho n
B = 5n + 6 \(\left(n\in Z\right)\) . Tìm n để B chia hết cho n
2) Tính nhanh
a) \(\left(\frac{3}{29}-\frac{1}{5}\right).\frac{29}{3}\)
b) \(\frac{1}{7}.\frac{5}{9}+\frac{5}{9}.\frac{1}{7}+\frac{5}{9}.\frac{3}{7}\)
Bài 1 : Tìm \(n\in N\)
a) \(\frac{4n-1}{3n+2}\in N\) b) \(\frac{5n-7}{2n+1}\in N\)
Bài 2 : Tìm \(n\in N\)
a) \(\left(n+2\right)\cdot\left(2n+5\right)=21\) b) \(\left(2n-3\right)\cdot\left(n-5\right)=22\)
Bài 3 : Tìm \(x.y\in N\)
a) \(\left(2n+1\right)\cdot\left(3y-5\right)=12\) b) \(\left(3x-1\right)\cdot\left(4y+3\right)=14\)
Cách bạn giải ra giúp mình nha !
Cho M=\(\frac{4n+3}{n-1}\left(n\in Z,n\ne1\right)\)tìm n để M có giá trị là một số nguyên
Cho Biểu Thức : \(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\left(n\in Z,n\ne3\right)\)
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là p/s tối giản
.
tìm các số tự nhiên n để \(\left(n^3+1\right)\)là số chính phương