Cho \(B=\left[\frac{n}{3}\right]+\left[\frac{n+1}{2}\right]+\left[\frac{n+2}{3}\right]\)
Tìm n\(\in N\) để B chia hết cho 3
Phần nguyên của số hữu tỉ x được kí hiệu [x] là số nguyên lớn nhất không vượt quá x. Cho:
A=\(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]\)và B=\(\left[\frac{n}{3}\right]+\left[\frac{n+1}{3}\right]+\left[\frac{n+2}{3}\right]\) với \(n\in N\)
Tìm n để: a, A chia hết cho 2
b, B chia hết cho 3
Xét các dạng của n trong phép chia cho 2 và 3
2k , 2k+1
3p, 3p+1. 3p+2
Cho \(A=\left[\frac{n}{2}\right]+\left[n+\frac{1}{2}\right];B=\left[\frac{n}{3}\right]+\left[n+\frac{1}{3}\right]+\left[n+\frac{2}{3}\right]\)với giá trị nào của n thuộc Z thì :
a) A chia hết cho 2 ; b) B chia hết cho 3
1) Cho tổng:
A = 4n + 4 \(\left(n\in Z\right)\) . Tìm n để A chia hết cho n
B = 5n + 6 \(\left(n\in Z\right)\) . Tìm n để B chia hết cho n
2) Tính nhanh
a) \(\left(\frac{3}{29}-\frac{1}{5}\right).\frac{29}{3}\)
b) \(\frac{1}{7}.\frac{5}{9}+\frac{5}{9}.\frac{1}{7}+\frac{5}{9}.\frac{3}{7}\)
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
\(\left[\frac{n}{3}\right]+\left[\frac{n+1}{3}\right]+\left[\frac{n+2}{3}\right]\)Với giá trị nào của số tự nhiên n để A chia hết cho A
các bạn ơi đề bài là để A chia hết cho 3 nha máy mình bị lỗi thành thật xin lỗi mong mọi người giải hộ mình nhanh chút
Cho Sn = \(\left(1+\frac{1}{2}\right)+\left(2+\frac{2}{2^2}\right)+\left(3+\frac{3}{2^3}\right)+...+\left(n+\frac{n}{2^n}\right)\). Tìm n để Sn = 4951
1 Tìm số dư khi chia A ,B cho 2 biết
A=\(\left(4^n+6^n+8^n+10^n\right)-\left(3^n+5^n+7^n+9^n\right)\left(n\in N\right)\)
B=\(1995^n+1996^n+1997^n\left(n\in N\right)\)
2.Tìm chữ số tận cùng của \(9^{9^{2000}}\)
b.tìm 3 chứ số tận cùng của \(2008^{100}\)
3.tìm (x,y)thõa mãn:\(\left(\frac{2x-5}{9}\right)^{2016}+\left(\frac{3y+0,4}{3}\right)^{2012}=0\)
b,\(x\left(x+y\right)=\frac{1}{48}\) và \(y\left(x+y\right)=\frac{1}{24}\)
Cho a,b,c là các số thực không âm và n ≥ log23 - 1. Chứng minh rằng :
\(\left(\frac{a}{b+c}\right)^n+\left(\frac{b}{c+a}\right)^n+\left(\frac{c}{a+b}\right)^n+\frac{\left(2^{n+1}-3\right)abc}{2^{n-3}\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
đăng thể hiện mình giỏi hả nhóc, lô ga rít lớp 9 đã hc à,
ối giồi ôi lun, lo ga rít lớp mấy cx ko bít, bv:
Chứng minh rằng với \(n\in N\)* thì:
a, \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
b, \(1^3+2^3+3^3+...+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)
c, \(n+2\left(n-1\right)+3\left(n-2\right)+...+n=\frac{n\left(n+1\right)\left(n+2\right)}{6}\)
Giúp mik với
Tính nhanh:
a. A=\(\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\left(n\in N\right)\)
b. B=\(\left(10000-1^2\right)\left(10000-2^2\right)\left(10000-3^2\right)..\left(10000-1000^2\right)\)
c. C=\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
d. D=\(1999^{\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)...\left(1000-10^3\right)}\)
a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)
b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)
c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)
\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)