Chứng minh rằng các phân số sau là phân số tối giản ( n thuộc N)
a) 12n+1/ 30n+2
b) 21n+4/ 14n+3
Chứng minh rằng các phân số sau đây tối giản, n thuộc N
12n+1 trên 30n+2
21n+4 trên 14n+3
Lưu ý : trên là dấu gạch ngang giữa tử và mẫu. Có cả cách làm nha
Gọi (12n+1,30n+2)=d
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d (1)
30n+2 chia hết cho d => 2(30n+2) chia hết cho d (2)
Từ (1) và (2) => 5(12n+1) - 2(30n+2) chia hết cho d
60n+5 - 60n+4 chia hết cho d
1 chia hết cho d
=> d=1
=> 12n+1/30n+2 là phân số tối giản
Phần tiếp theo tương tự
a ) Gọi d là ƯC ( 12n+1; 30n+2 )
⇒ 12n+1 ⋮ d ⇒ 60n+5 ⋮ d
⇒30n+2 ⋮ d ⇒ 60n+4 ⋮ d
⇒ [ ( 60n+5 ) - ( 60n+4 ) ] ⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Vì ƯC ( 12n+1; 30n+2 ) = 1 ⇒ \(\frac{12n+1}{30n+2}\) là phân số tối giản
b ) Gọi d là ƯC( 21n+4; 14n+3 )
⇒ 21n+4 ⋮ d ⇒ 42n+8 ⋮ d
⇒ 14n+3 ⋮ d ⇒ 42n+9 ⋮ d
⇒ [ ( 42n+9 ) - ( 42n+8 ) ] ⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Vì ƯC ( 21n+4; 14n+3 ) = 1 ⇒ \(\frac{21n+4}{14n+3}\) là phân số tối giản
Chứng minh các phân số sau là phân số tối giản
\(A=\dfrac{12n+1}{30n+2}\) \(B=\dfrac{14n+17}{21n+25}\)
Bài 34: chứng minh các phân số sau là các phân số tối giản :
a) A= 12n+1/30n+2 b) B= 14n+17/21n+25
Giải:
a) \(A=\dfrac{12n+1}{30n+2}\)
Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}5.\left(12n+1\right)⋮d\\2.\left(30n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(A=\dfrac{12n+1}{30n+2}\) là p/s tối giản
b) \(B=\dfrac{14n+17}{21n+25}\)
Gọi \(ƯCLN\left(14n+17;21n+25\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3.\left(14n+17\right)⋮d\\2.\left(21n+25\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\)
\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(B=\dfrac{14n+17}{21n+25}\) là p/s tối giản
Chúc bạn học tốt!
Chứng minh các phân số sau là các phân số tối giản:
a) A = 12n+1/30n+2
b) B = 14n+17/21n+25
b. Gọi d là ƯCLN của 14n+17 và 21n+25
Ta có: * 14n+17 chia hết cho d
=> 3 (14n+17) chia hết cho d
=> 42n+51 chia hết cho d
* 21n+25 chia hết cho d
=> 2 (21n+25) chia hết cho d
=> 42n+50 chia hết cho d
Ta lại có:
42n+51 - (42n+50) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> B là phân số tối giản
nhấn đ-ú-n-g cko mìh nhaz
a,(12n+1;30n+2)=1
12n+1 chia hết cho d
30n+2 chia hết cho d
<=>60n+5 chia hết cho d
60n+4 chia hết cho d
=>(12n+1 - 30n+2)=(60n+5)-(60n+4)=1
Phần b như của bạn Lê Song Thang Nhã nha
Chứng minh rằng phân số sau tối giản
A.12n+1/30n+2 n B.21n+4/14n+3
Mong đc ac giúp đỡ ạ
tham khaor vaof link : https://hoc24.vn/cau-hoi/bai-34-chung-minh-cac-phan-so-sau-la-cac-phan-so-toi-gian-a-a-12n130n2-b-b-14n1721n25.1058785524789
a, Tham khảo:https://hoc247.net/hoi-dap/toan-7/chung-minh-12n-1-30n-2-toi-gian-faq266270.html
b, Tham khảo:https://hoc247.net/hoi-dap/toan-6/chung-minh-phan-so-21n-4-14n-3-toi-gian-faq72150.html
Chứng minh các phân số sau là phân số tối giản
a) A=12n+1/30n+1
b) B=14n+17/21n+25
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
Chứng minh các phân số sau là phân số tối giản
A=12n+1/30n+2
B=14n+17/21n+25
a, \(A=\frac{12n+1}{30n+2}\)
Gọi \(d=ƯCLN\left(12n+1;30n+2\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
b, \(B=\frac{14n+17}{21n+25}\)
Gọi \(d=ƯCLN\left(14n+17;21n+25\right)\)
\(\Rightarrow\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}\Rightarrow\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
#Giải:
a) Gọi d = ƯC (12n + 1, 30n + 2 )
Xét hiệu :
(30n + 2) - (12n + 1) chia hết cho d
2(30n + 2) - 5 (12n + 1 ) chia hết cho d
60n + 4 - 60n - 5 chia hết cho d
4 - 5 chia hết cho d
=> -1 chia hết cho d
=> d € Ư (-1)
Ư (-1) = { 1 ; -1 }
Vậy A là phân số tối giản
b)*Tương tự*
Chứng minh rằng các phân số sau đây tối giản
a, 12n+ 1/ 30n+ 2 b, 21n+ 4/ 14n+ 3 ( n thuộc N )
Chứng minh rằng các phân số sau là phân số tối giản với mọi n là số tự nhiên:
a, 2n+1/2n+3
b, 14n2+17/21n2+25
c, 12n+1/30n+2
d, 3n3-2/4n3 -3
a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath