Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Hoàng Quân
Xem chi tiết
Nguyễn Trung Kiên
2 tháng 10 2021 lúc 22:11

Đề bài thiếu trường hợp nhé bạn

Đây là lời giải cũ của mình:

Có 3 trường hợp của p:

- Trưởng hợp 1: \(p⋮3\)

Vì p là số nguyên tố \(\Rightarrow p=3\Rightarrow3p-1=3.3-1=8⋮2\)Khi đó 3p-1 không là số nguyên tố, trái với đề bài.

- Trường hợp 2: \(p\)chia 3 dư 1.

Coi \(p=3k+1\)

\(p=3k+1\Rightarrow8p+1=8\left(3k+1\right)+1=24k+8+1=24k+9\)

Dựa theo tính chất chia hết của 1 tổng, \(8p+1⋮3\)

Mà \(8p+1>3\Rightarrow8p+1\)là hợp số

- Trường hợp 3: \(p\)chia 3 dư 2

Lúc này cũng coi \(p=3k+2\)

Có thể suy ra được rằng \(p=3k+2\Rightarrow3p-1=3\left(3k+2\right)-1=9k+6-1=9k+5\)

Khi đó, lại chia tiếp ra 2 trường hợp nữa:

\(k\)chia 2 dư 1 \(\Rightarrow9k+5⋮2\)

Mà vì \(9k+5>2\)nên \(9k+5=3p-1\)sẽ là hợp số, trái với đề bài.

\(k⋮2\Rightarrow p=\left(3k+2\right)⋮2\)

Để có thể thỏa mãn với đề bài, p chỉ có thể bằng 2 với \(k=0\)

(Thực ra, khi làm đến đây, mình mới thấy cái thiếu của đề bài vì khi \(p=2\Rightarrow3p-1=3.2-1=5\Rightarrow8p+1=8.2+1=17\); cả ba số 2; 5; 17 ta có được vào lúc này đều là số nguyên tố. Mặc dù thiếu như vậy nhưng lời giải ban đầu của mình cũng rất đáng để tham khảo)

Mong bạn hãy sửa lại đề bài nhé

Chúc bạn học tốt!

Khách vãng lai đã xóa
Hụt Hẫng
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Miyano Shiho
11 tháng 4 2016 lúc 17:08

p=3. 

 

Thảo Mai Phù Thủy
Xem chi tiết
Wall HaiAnh
8 tháng 2 2018 lúc 22:12

Với p=2 \(\Rightarrow\)8p+1=8.2+1=16+1=17 là số nguyên tố (chọn)

Với p=3\(\Rightarrow\)8p+1=8.3+1=24+1=25 là hợp số (loại)

Nếu p>3 \(\Rightarrow\)p có dạng 3k+1 hoặc 3k+2 (k\(\in\)N*)

Với p=3k+1\(\Rightarrow\)8p+1=8(3k+1)+1=24k+8+1=24k+9\(⋮\)3 và lớn hơn 3 (loại)

Với p=s3k+2\(\Rightarrow\)8p+1=8(3k+2)+1=24k+16+1=24k+17 là số nguyên tố và lớn hơn 3 (chọn)

\(\Rightarrow\) p=2 hoặc 3k+2

Với p=2\(\Rightarrow\)4p+1=4.2+1=8+1=9 là hợp số (chọn)

Với p=3k+2\(\Rightarrow\)4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số (chọn)

Vậy p=2 hoặc p=3k+2 thì 8p+1 là SNT là 4p+1 là hợp số

Tề Mặc
9 tháng 2 2018 lúc 12:43

Với p=2 8p+1=8.2+1=16+1=17 là số nguyên tố (chọn)

Với p=38p+1=8.3+1=24+1=25 là hợp số (loại)

Nếu p>3 p có dạng 3k+1 hoặc 3k+2 (kN*)

Với p=3k+18p+1=8(3k+1)+1=24k+8+1=24k+93 và lớn hơn 3 (loại)

Với p=s3k+28p+1=8(3k+2)+1=24k+16+1=24k+17 là số nguyên tố và lớn hơn 3 (chọn)

 p=2 hoặc 3k+2

Với p=24p+1=4.2+1=8+1=9 là hợp số (chọn)

Với p=3k+24p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số (chọn)

Vậy p=2 hoặc p=3k+2 thì 8p+1 là SNT là 4p+1 là hợp số

Đinh Nguyễn Anh Thư
Xem chi tiết
✦๖ۣۜAugųsť❦❄
7 tháng 5 2021 lúc 20:32

câu 2:

p là 1 số nguyên tố (p>3),

do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2

nhưng do p +4 là số nguyên tố (3k+2+4=3k+6 \(⋮\)3) nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.

câu 3:

Nếu p= 2 => 8p - 1 = 16 - 1= 15 là hợp số (loại)

Nếu p = 3=> 8p - 1 =24 - 1 = 23 là số nguyên tố 8p + 1 = 25 là hợp số

Nếu p > 3 => p có dạng 3K+1 hoặc 3K+2 

Nếu p = 3K + 2 =>p = 24K + 16 - 1 = 24K + 15 thỏa mãn 3 và là hợp số (thỏa mãn điều kiện)

=> p = 3K + 1 => 8p + 1 = 24K +8 + 1 = 24K + 9 thỏa mãn 3 , là hợp số 

Khách vãng lai đã xóa
Nguyễn Đỗ Khánh Ly
7 tháng 5 2021 lúc 20:46

Giả sử p là 1 số nguyên tố > 3, do p không chia hết cho 3 nên p có dạng là

3k + 1 hoặc 3k + 2

ta có

p = 3k + 2 suy ra p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k+2)

vì 3 chia hết cho 3 nên 3.(k+2) chia hết cho 3 nên p +4 là hợp số  (1)

nếu p = 3k +1 suy ra p + 8 = 3k+1+8 =3k+9 =3.(k+3)

vì 3 chia hết cho 3 nên 3.(k+3) chia hết cho 3 nên p +8 là hợp số  (2)

từ (1) và (2) suy ra p và p+4 là SNT (p>3) thì p+8 là HS

Vậy .................

Khách vãng lai đã xóa
Trung Nguyen
Xem chi tiết
People
Xem chi tiết
Lỗ Thị Thanh Lan
Xem chi tiết
Dat nguyen van
11 tháng 11 2014 lúc 21:57

A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

B ,  nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI

nếu  p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này

vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số

chứng tỏ 4p+1 là hợp số (đpcm)

Lê Bảo Khanh
16 tháng 4 2016 lúc 20:15

Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1

Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số   (LOẠI)

VẬY ......................

Lê Bảo Khanh
16 tháng 4 2016 lúc 20:23

b)Tương tự cách làm trên:

Nếu p=3k+1 thì 8p+1 =8(3k+1)+1=24k+8+1 =24k+9chia hết cho 3 nên là hợp số(loại)

Vậy.....................................

đinh tuấn khang
Xem chi tiết