Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Hàn
Xem chi tiết
Trần Việt Linh
10 tháng 10 2016 lúc 22:44

Có: \(\left(3x-2\right)^2\ge0\)

=> \(\frac{13}{\left(3x-2\right)^2+11}\le\frac{13}{11}\)

Vậy GTLN của A là \(\frac{13}{11}\) khi \(3x-2=0\Rightarrow x=\frac{2}{3}\)

Lightning Farron
10 tháng 10 2016 lúc 22:45

Ta có:

\(\left(3x-2\right)^2\ge0\)

\(\Rightarrow\left(3x-2\right)^2+11\ge11\)

\(\Rightarrow A\le\frac{13}{11}\)

Dấu = khi \(3x-2=0\Leftrightarrow x=\frac{2}{3}\)

Vậy MaxA=\(\frac{13}{11}\Leftrightarrow x=\frac{2}{3}\)

Mk tên là Chi
Xem chi tiết
Lê Tài Bảo Châu
2 tháng 11 2019 lúc 19:03

\(A=\frac{13}{\left(3x-2\right)^2+11}\)

Vì \(\left(3x-2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(3x-2\right)^2+11\ge0+11;\forall x\)

\(\Rightarrow\frac{13}{\left(3x-2\right)^2+11}\le\frac{13}{11};\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(3x-2\right)^2=0\)

                       \(\Leftrightarrow x=\frac{2}{3}\)

Vậy Max\(A=\frac{13}{11}\)\(\Leftrightarrow x=\frac{2}{3}\)

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Mai
Xem chi tiết
Pham Van Hung
13 tháng 2 2019 lúc 21:34

a, ĐKXĐ: \(x\ne-3\) và \(x\ne\pm1\)

b, \(P=\frac{x\left(x+3\right)-11+x^2-3x+9}{x^3+27}:\frac{x^2-1}{x+3}\)

\(P=\frac{2x^2-2}{x^3+27}.\frac{x+3}{x^2-1}\)

\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x+3\right)\left(x^2-3x+9\right)}.\frac{x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2}{x^2-3x+9}\)

c, \(P=\frac{2}{x^2-3x+9}==\frac{2}{\left(x-\frac{3}{2}\right)^2+\frac{27}{4}}\le\frac{2}{\frac{27}{4}}=\frac{8}{27}\)

Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy P lớn nhất bằng \(\frac{8}{27}\) \(\Leftrightarrow x=\frac{3}{2}\)

\(P=\left(\frac{x}{x^2-3x+9}-\frac{11}{x^3+27}+\frac{1}{x+3}\right):\frac{x^2-1}{x+3}.\)

ĐKXĐ : \(x\ne-3;x\ne0\)

\(P=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2-3x+9\right)}-\frac{11}{\left(x+3\right)\left(x^2-3x+9\right)}+\frac{x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)

\(P=\left(\frac{x^2+3x-11+x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)

\(P=\frac{2x^2-2}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}=\frac{2\left(x^2-1\right)}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}\)

\(P=\frac{2}{x^2-3x+9}\)

dinh thao nguyen
8 tháng 2 2020 lúc 9:51

Nếu có câu "d" tìm giá trị nguyên của x để P nguyên thì sao ?

Ai giải được giải giúp với !!!

Khách vãng lai đã xóa
Ngô Minh Đức
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 22:12

\(A=-\left|3x-3\right|-\left(4x-4\right)^2-11\le-11\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}3x-3=0\\4x-4=0\end{matrix}\right.\Leftrightarrow x=1\)

Trịnh Ngọc Thành
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Huyền Trang
5 tháng 2 2021 lúc 15:15

undefined

Lê Thu Hiền
5 tháng 2 2021 lúc 12:33

Giups mik vs

lolang

Xem chi tiết
zZz Cool Kid_new zZz
2 tháng 3 2019 lúc 18:23

Để B có giá trị lớn nhất thì \(\left(x-11\right)^2+29\) nhỏ nhất

Mà \(\left(x-11\right)^2\ge0\Rightarrow\left(x-11\right)^2+29\ge29\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-11\right)^2=0\Leftrightarrow x=11\)

Vậy \(B_{MAX}=\frac{10}{29}\Leftrightarrow x=11\)

subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Dễ thương khi đào mương
Xem chi tiết
Thùy Dương
31 tháng 3 2017 lúc 6:55

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)