Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tường Nguyễn Thế
Xem chi tiết
Akai Haruma
28 tháng 12 2017 lúc 1:17

Lời giải:

Nếu $a$ là số tự nhiên không chia hết cho $5$ thì xét các TH sau:

+) \(a\equiv 1\pmod 5\Rightarrow a^2\equiv 1\pmod 5\)

+) \(a\equiv 2\pmod 5\Rightarrow a^2\equiv 4\pmod 5\)

+) \(a\equiv 3\pmod 5\Rightarrow a^2\equiv 9\equiv 4\pmod 5\)

+) \(a\equiv 4\pmod 5\Rightarrow a^2\equiv 16\equiv 1\pmod 5\)

Như vậy, khi a là số không chia hết cho $5$ thì \(a^2\equiv 1,4\pmod 5\)

----------------------------------------

Ta có:

\(M=a^4(a^4-1)+4(a^4-1)\)

\(M=(a^4-1)(a^4+4)\)

Nếu \(a^2\equiv 1\pmod 5\Rightarrow a^4\equiv 1\pmod 5\)

\(\Rightarrow \left\{\begin{matrix} a^4-1\vdots 5\\ a^4+4\vdots 5\end{matrix}\right.\Rightarrow M=(a^4-1)(a^4+4)\vdots 25\)

Nếu \(a^2\equiv 4\pmod 5\) \(\Rightarrow a^4\equiv 16\equiv 1\pmod 5\)

\(\Rightarrow \left\{\begin{matrix} a^4-1\vdots 5\\ a^4+4\vdots 5\end{matrix}\right.\Rightarrow M=(a^4-1)(a^4+4)\vdots 25\)

Vậy trong mọi TH thì \(M\vdots 25\) (*)

Mặt khác:

\(M=(a-1)(a+1)(a^2+1)(a^2-2a+2)(a^2+2a+2)\)

Nếu a chẵn thì \(a^2-2a+2\vdots 2; a^2+2a+2\vdots 2\)

\(\Rightarrow M\vdots 4\)

Nếu a lẻ thì \(a-1\vdots 2; a+1\vdots 2\Rightarrow M\vdots 4\)

Vậy M luôn chia hết cho $4$ (**)

Từ (*) và (**) kết hợp với (25, 4) nguyên tố cùng nhau suy ra \(M\vdots 100\)

giaminh123
Xem chi tiết
Nguyễn Anh Quân
22 tháng 1 2018 lúc 21:37

b, Có : 3a+7b chia hết cho 4

Mà 16a và 8b đều chia hết cho 4

=> 3a+7b+16a-8b chia hết cho 4

=> 19a-b chia hết cho 4

=> ĐPCM

Tk mk nha

giaminh123
22 tháng 1 2018 lúc 21:45

ĐPCM là gì vậy?

Nguyễn Thị Thu Hằng
Xem chi tiết
le thuy linh
Xem chi tiết
vũ khánh ly
Xem chi tiết
Nguyễn Phương Uyên
23 tháng 5 2018 lúc 20:16

a, n(n+1)(n+2)

nhận xét : 

n; n+1; n+2 là 3 số tự nhiên liên tiếp

=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3             (1)

ƯCLN(2;3) = 1   (2)

(1)(2) => n(n+1)(n+2) \(⋮\) 6

b, 3a + 5b \(⋮\) 8

=> 5(3a + 5b) \(⋮\) 8

=> 15a + 25b \(⋮\) 8

3(5a + 3b) = 15a + 9b

xét hiệu : 

(15a + 25b) - (15a + 9b)

= 15a + 25b - 15a - 9b

= (15a - 15a) + (25b - 9b)

= 0 + 16b

= 16b và (3;5) = 1

=> 5a + 3b \(⋮\) 8

c, làm tương tự câu b

phạm thị bích huyền
Xem chi tiết
Lê Minh Anh
25 tháng 8 2016 lúc 9:20

Xét hiệu: 3(a + 2b) - (3a - 4b) = 3a + 6b - 3a + 4b = 10b chia hết cho 5.         (1)

Mặt khác: (a + 2b) chia hết cho 5  => 3(a + 2b) cũng chia hết cho 5                (2)

Từ (1) và (2) ta có: (3a - 4b) chia hết cho 5.

Trần Mai Linh
25 tháng 8 2016 lúc 9:23

Ta có (a+ 2b) chia hết cho 5.

Suy ra a+b+b tận cùng bằng 0,5.

Suy ra 2b = 0 ( số chẵn)

Xét 2TH

TH1 a có tận cùng = 0 suy ra 3a có tận cùng = 0

4b=2b*2 có tận cùng =0 (1)

TH2 a có tận cùng là 5 suy ra 3a có tận cùng = 5

4b=2b*2 có tận cùng =0 (2)

Từ 1 và 2 suy ra nếu (a+2b) chia hết cho 5 thì (3a -4b) chia hết cho 5

Aido
Xem chi tiết
Phạm Tú Uyên
Xem chi tiết
Diệp Ẩn
Xem chi tiết

1.Áp dụng định lý Fermat nhỏ.

Nguyễn Linh Chi
27 tháng 8 2019 lúc 14:41

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

zZz Cool Kid_new zZz
27 tháng 8 2019 lúc 14:53

Cách 2

\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)

Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)

Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)

Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)

Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)

Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)

Vậy \(a^5-a⋮5\)